

SOLUCIONES MAGNÉTICAS

La empresa

En IMA, Ingeniería Magnética Aplicada S.L., ubicada en Ripollet (Barcelona), contamos con una experiencia de más de 30 años en el sector magnético, más específicamente en el campo de la comercialización y en el de la fabricación. Esto nos proporciona una visión global (técnica y práctica) de todo el ámbito que envuelve el magnetismo. Contamos con un gran programa de información: página web, trípticos, mailing, etc., para dar a conocer nuestros productos, además de inserciones publicitarias y artículos en revistas especializadas en los sectores industriales y de divulgación científica. De la misma manera, trabajamos en la industria aeroespacial, robótica, farmacéutica y automovilística.

En IMA, S.L. desarrollamos y realizamos constantemente estudios y soluciones progresivas por requerimiento de nuestros clientes. Nuestra dinámica, nuestro crecimiento continuo y nuestro éxito como especialistas en magnetismo, nos consolidan como una de las empresas más destacadas del sector magnético a nivel mundial. Entre nuestros productos destacan una extensa gama en sistemas magnéticos de separación (tambores, separadores y pistas magnéticas) así como nuestros imanes permanentes, cintas magnéticas, imanes plastificados, bases magnéticas y electroimanes. La buena calidad que poseen nuestros productos es el resultado de una planificación detallada y un acabado perfecto.

Comprometidos con el medioambiente.

Reducir el impacto del proceso de producción de imanes en la naturaleza es una de las principales máximas de IMA. A la que dedicamos todos nuestros esfuerzos para desarrollar productos y soluciones más eficientes y sostenibles. Nuestro compromiso con el cumplimiento de la legislación, la mejora continua del rendimiento medioambiental y la prevención de la contaminación, promueve nuestro Sistema de Gestión Medioambiental ISO 14001:2015.

Investigación y desarrollo

Nuestra experiencia es la base para el continuo desarrollo y perfeccionamiento de nuestros productos y de nuestra producción, logrando siempre cumplir todos los requisitos y ofrecer a nuestros clientes imanes del más alto nivel de calidad. Disponemos de uno de los departamentos I + D pioneros dentro del sector magnético. Además, buscamos nuevos métodos de crear imanes mediante el desarrollo de nuevas tecnologías, materiales y sistemas magnéticos avanzados.

Nuestro sistema de producción

Contamos con personal altamente cualificado y los medios técnicos (maquinaria) de última generación, permitiendo a nuestros especialistas proyectar, desarrollar y realizar, en estrecho contacto con las necesidades de nuestros clientes, los mejores y más adecuados productos y soluciones, bajo la estricta observación de las más exigibles normas de calidad. Ponemos todos nuestros conocimientos y herramientas tecnológicas avanzadas en el proceso con el fin de fabricar la solución magnética más adaptada a cada necesidad.

SOLUCIONES MAGNÉTICAS

CALIDAD Y CERTIFICACIONES

- Compromiso IMA: máximos estándares de calidad en todos los productos y procesos productivos, siguiendo las certificaciones internacionales:
- » IATF 16946
- » ISO 9001
- » ISO 14001
- » PYME Innovadora

CADENA DE SUMINISTRO

- Estrictos controles de calidad y seguridad en la adquisición de materias primas y componentes.
- Máxima exigencia en la selección de proveedores para garantizar la calidad y el servicio.
- IMA es proveedor global con instalaciones en España, Italia y China.

CAPACIDAD PRODUCTIVA Y CONTROL DE PROCESOS

- Instalaciones amplias y modernas de +5000m² con equipos tecnológicos de última generación.
- Producción integral de sistemas magnéticos, sistemas eléctricos y electroimanes.
- Integración de procesos de producción: inyección, extrusión, calandrado, mecanizado, corte, molde.
- · Altos niveles de optimización y eficiencia gracias a la automatización de los procesos productivos

SOLUCIONES MAGNÉTICAS

CONOCIMIENTO Y TECNOLOGÍA

Laboratorio provisto de equipos de control y ensayos de última generación.

- Departamento de I+D pionero en el sector.
- · Personal altamente cualificado.
- Búsqueda constante de nuevas tecnologías de producción.
- · Estudio y desarrollo de nuevos materiales y recubrimientos.
- Desarrollo de sistemas magnéticos avanzados para múltiples aplicaciones.
- Colaboración con universidades y centros de investigación.

EXPERTISE Y SOLIDEZ EMPRESARIAL

- Grupo empresarial sólido y solvente con más de 30 años de experiencia.
- Amplia cartera de clientes multisectoriales repartidos en más de 60 países.
- Desarrollo de proyectos de máximo nivel en colaboración con el cliente final.
- Asesoramiento profesional e individualizado para cualquier aplicación y sector.
- · Líderes nacionales en sectores como: automoción, electrónica, eólica y motores, aeroespacial, aeronáutica, medicina, alimentación, reciclaje, minería, manutención, robótica y construcción.

CATÁLOGO DE PRODUCTOS

ÍNDICE

- Inyección y Moldes
 - Imanes inyectados Imanes sobre inyectados Imanes prensados moldes de inyección plásticos inyectados
- 6 Imanes de Ferrita
 Bloques de Ferrita Discos de Ferrita Aros de Ferrita
- 8 Imanes de Tierras Raras
 8 Bloques de Neodimio Discos de Neodimio Aros de Neodimio Bloques de Samario Discos de Samario Aros de Samario
- 1 / Bases Magnéticas

Bases de Alnico: Cilíndrica Imantada - Puente Dos Agujeros Pasantes - Puente Un agujero Pasante Central - Imanes de Herradura - Base Magnética Baja - Base Magnética con Rosca Interor - Botón - Base Magnética con Armazón - Agiadores Magnéticos.

Bases magnéticas Ferrita: Sistema Magnético Cerámico - Sistema Magnético Cerámico Pasante - Base Magnética con Roscado Exterior - Base Magnética con Roscado Interior - Base Magnética Rosado con Gancho - Imanes Decorativos con Cuerpo de Plástico.

Bases Magnéticas Neodimio: Sistema Magnético Básico - Base Magnética Roscado Interior - Base Magnética Pasante - Base Magnética Roscado Exterior - Base Magnética Cilíndrica - Base Magnética Alta - Base Magnética con Gancho.

Bases Magnéticas Samario: Sistemas Magnético Básico - Sistema Magnético Roscado Interior - Sistema Magnético Cilíndrico.

Cierres Magnéticos: Imanes de Bloqueo - Imanes Ajustables - Imanes de Encaje.

Soportes Magnéticos: Soporte para Cuchillos y Herramientas - Soportes de Neodimio

27 Cintas Magnéticas

Tipo CM1 Isotrópica: Cinta Magnética - Cinta Magnética PVC Blanco - Cinta Adhesiva - Cinta Natural (Bobina) - Cinta Magnética PVC Blanco (Bobina) - Cinta magnética Adhesiva (Bobina) - Etiqueta Magnética.

Tipo CM2 Anisotrópica: Planchas - Cinta Natural - Cinta Troquel Discos/Aros - Papel Magnético- Sobre Magnéticos - Cartulina Impregnada en Acero.

Imanes de Oficina

Imanes de Neodimio: Imanes Redondos de Neodimio - Imanes Rectangulares de Neodimio - Fichas Magnéticas. *Imanes de Ferrita:* Imanes Redondos de Ferrita - Imanes Rectangulares de Ferrita.

/ Sistemas de Filtración Magnética

Filtros Magnéticos - Parrillas Magnéticas - Parrillas y Filtros Magnéticos Semi auto - limpiables - Filtros Magnéticos para Líquidos - Barras Magnéticas - Placas Magnéticas - Torpedos Magnéticos (Ferrita / Neodimio) - Tubos Magnéticos con Carcasa Inoxidable (Ferrita / Neodimio) - Tubos Magnéticos con Separador Exterior — Tambor Magnético con Armario Difusor - Tambores Magnéticos - Placa Especial P.E.F - Separador Magnético Rotativo - Imán Telescópico - Rodillos Magnéticos - Overbands.

CATÁLOGO DE PRODUCTOS

ÍNDICE

na ma ma ma ma ma ma ma ma ma

Sistemas de Manipulación y Robótica
Elevadores Magnéticos - Separador Magnético de Chapa - Separador Electromagnético - Cinta Transportadora Magnética - Poleas Magnéticas - Raíles, Curvas y Pistas Magnéticas - Sistemas de Transporte Automático - Paletizador

Sistema Magnético para Encofrados

Cajas Magnéticas - Bloques Magnéticos - Triángulos Imantados - Perfiles Imantados - Perfiles de Poliuretano Magnéticos - Bloques Magnéticos de Poliuretano - Esferas de Poliuretano - Bases de Poliuretano - Paredes Magnéticas - Accesorios Varios: Sistemas de Sujeción a Medida - Palancas de Extracción - Cuadros Magnéticos - Imán de Base redonda - Imán de Sujeción para Tubos.

Desmagnetizadores e Imantadoras

Desmagnetizadores de Sobremesa - Desmagnetizador de Túnel - Desmagnetizador Portátil - Imantadora

Equipos de Control Magnético

Fluxómetro - Modelo EF5 - Fluxómetro Modelo EF14 - Bobina para Fluxómetros - Gaussímetro / Tesla FH 55 - Gaussímetro / Tesla FH 51 - Sonda Hall Modelo HS-TB51 - Sonda Hall Modelo HS-TGB5104005 - Medidor de Polos - Permeámetro.

Electroimanes

Electroimanes Rectangulares – Electroimanes Rectangulares Permanentes - Electroimanes Circulares – Corriente Continua - Corriente Continua Electropermanente (Calidad Neodimio) - Electroimanes de Accionamiento Serie ER.

Fuentes de Alimentación

Fuente IMA-100 - Fuente DRT 960W - Fuente IMA-250

Información técnica 1

Variaciones de Geometrías Centrajes, Tolerancia – Materiales Magnéticos – Fuerza de Adherencia – Dirección de la Orientación – Dirección de Imantación – Formas de Imanes – Terminología y Definiciones – Normas de Suministros

100

INYECCIÓN Y MOLDES

Los imanes inyectados son productos magnéticos mezclados con diferentes productos plásticos. Su principal ventaja es la diversidad de moldeado que ofrece el proceso de inyección, permitiendo personalizar todos los productos para satisfacer las necesidades de los clientes.

Los imanes plásticos pueden ser inyectados, sobre-inyectados o prensados. Disponemos de un equipo técnico de ingenieros encargado de la fabricación de moldes de plástico que, junto a un equipo de última generación, garantizan la mejor calidad de nuestras piezas.

Usamos programas de simulación durante la etapa de desarrollo del producto, para asegurar que las piezas plásticas cumplen con todos los requisitos técnicos antes de producirlas.

IMANES INYECTADOS

Este tipo de imanes inyectados son más resistentes a la corrosión que los materiales sinterizados, por este motivo se pueden utilizar en la mayoría de aplicaciones sin recubrimientos especiales.

Los imanes inyectados presentan también ventajas a nivel geométrico, igual que en el proceso de moldeo de plástico, podemos conseguir geometrías complejas y con tolerancias mucho más ajustadas que en los tradicionales imanes sinterizados.

IMANES SOBRE-INYECTADOS

Disponemos de un departamento interno de fabricación de moldes, que nos permite producir piezas personalizadas garantizando la máxima calidad y una perfecta implementación técnica.

Durante la etapa de desarrollo de producto realizamos simulaciones para asegurarnos que las piezas técnicas de plástico cumplen con todos los requisitos del cliente.

La producción de estos imanes es sumamente eficiente debido a un alto grado de automatización en el proceso de producción aportando el nivel de calidad requerido.

INYECCIÓN Y MOLDES

IMANES PRENSADOS

Este tipo de imanes es el resultado de la unión entre aglutinantes termoplásticos y polvos de imanes permanentes (ferrita, NdFeB y/o SmCo). Podemos hacerlos en calidades isótropas o anisótropas.

Presentan unas excelentes propiedades mecánicas que nos permiten alcanzar tolerancias ajustadas facilitando el equilibrio y ensamblajes de estas. Este material posibilita la creación de geometrías más complejas. Actualmente IMA fabrica este producto para numerosos clientes; fabricantes de motores, encoders magnéticos de electrodomésticos, lavadores y motores, automoción.

MOLDES DE INYECCIÓN

Disponemos de un departamento interno de fabricación de moldes, que nos permite producir piezas personalizadas garantizando la máxima calidad y una perfecta implementación técnica.

Durante la etapa de desarrollo de producto realizamos simulaciones para asegurarnos que las piezas técnicas de plástico cumplen con todos los requisitos del cliente.

La producción de estos imanes es sumamente eficiente debido a un alto grado de automatización en el proceso de producción aportando el nivel de calidad requerido.

PLÁSTICOS INYECTADOS

Para diseñar las piezas de plástico inyectado se utilizan las herramientas de software más avanzadas del sector para obtener mayor precisión y así poder evitar costes innecesarios. En el proceso de diseño, se incluyen las simulaciones que analizan los límites de trabajo de la pieza.

IMA ofrece el servicio de desarrollo de productos. Este, parte del diseño que facilita el cliente o es elaborado por la empresa, para desarrollar nuevos productos más eficientes. En definitiva, trabajamos juntamente con los clientes para mejorar el rendimiento de los proyectos de inyección de plásticos e incrementar las oportunidades para su negocio.

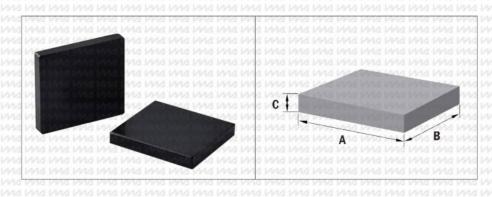
En esta fase se realiza una conceptualización, un diseño de los primeros prototipos, la elección de materiales y también se realizan diferentes ensayos con el molde hasta la fabricación de la pieza final.

IMANES DE FERRITA

Los imanes de ferrita o también conocido como de imanes cerámicos (Fe_2O_3 con Ba Fe_2O_4) son los más económicos del mercado. Su aspecto visual es de un óxido metálico de color gris oscuro. Tienen una gran resistencia a la corrosión y por lo tanto, son uno los productos más apropiados para diferentes usos en exteriores gracias a ser inoxidables. Probablemente, sean la mejor alternativa a los imanes de neodimio, ya que no solo resisten a la humedad y a la corrosión, sino que también son resistentes a diferentes tipos de productos químicos.

Propiedades químicas del imán

Los imanes de ferrita están formados por un sintetizado de óxidos de hierro (Fe_2O_3) , óxidos de ferrita de bario $(BaFe_2O_4)$ o estroncio. Las materias primas tienen un bajo costo. A la hora de trabajar con calidades anisotrópicas se elaboran un alineamiento de las partículas a una sola dirección, también pueden ser isotrópicas con una fuerza de sujeción inferior.


Propiedades mecánicas del imán

Los imanes de ferrita grandes tienen una gran dureza y a la vez alta fragilidad. Sin embargo, tiene una gran resistencia a la corrosión. Otros datos físicos se dan a conocer en las tablas de las páginas siguientes.

Propiedades magnéticas del imán

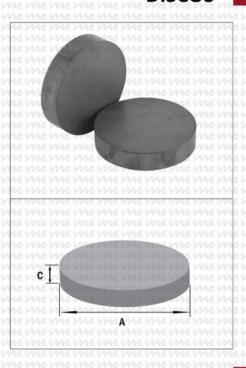
El imán de ferrita se encuentra también en las páginas siguientes en forma de diagramas o de tablas. Los imanes de ferrita grandes tienen una gran dureza y a la vez alta fragilidad. Además, con estos imanes se puede trabajar de -40 °C a los 350 °C.

BLOQUES

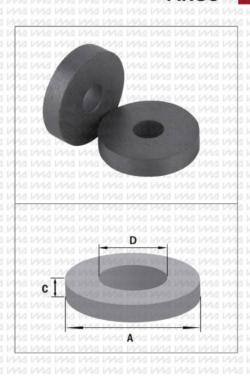
Bloques de Ferrita Medidas estándar (mm)*

Α	В	c
2	2,5	7,6
5	3	2
10	3	2
15	5	4
20	8	4
25	20	10
30	10	5
40	10	10
50	10	5
60	15	1444 144 144 7 144
70	20	4
80	20	8
90	20	10
100	100	8
150	100	25

IMANES DE FERRITA


Discos de Ferrita Medidas estándar (mm)*

ØA	C
2,5	1
10 1710	3
10	14 5/41
14 1124 V	44 544
15	na 51a
20	5
22	10
25	5
30	8
40	114 714
45 d M	na 1944 i
48	9 9
50	10
70	15
120	10


Aros de Ferrita Medidas estándar (mm)*

ØA	C	ØD
8	12	2,9
10	и изи и	14 4
13	18 8 1	3,4
15	5	9
20	11,5	7
25	4	15
30	10	8
40	na voja v	22
45	14 14 1a 1	25
50	9	24
60	13	24
70	9	32
120	20	60
155	17.5	57
220	25,4	110
256	25	121

DISCOS

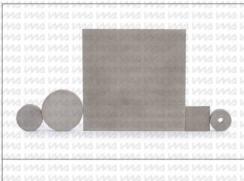
AROS

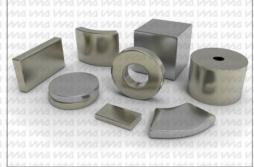
IMANES DE NEODIMIO Y SAMARIO

Los imanes de Neodimio y Samario representan la última generación de los materiales magnéticos. Dichos imanes poseen propiedades muy superiores a las tradicionales. Su alta coercitividad y su elevada remanencia nos permiten nuevos diseños.

La utilización de estos imanes está condicionada, sobre todo, por el factor temperatura: disponemos de una amplia gama que abarca desde los 80 °C (hasta los 220 °C) en la calidad Neodimio (Nd) y de los O °C (hasta los 350 °C) en la calidad Samario (Sm).

Cabe destacar la importancia del factor corrosión, sobre todo en los materiales de calidad Neodimio. Para evitar problemas de oxidación, la solución que aplicamos es recubrir los imanes; dicho recubrimiento puede varias según las necesidades de nuestros clientes. Los imanes de Samario no presentan ningún problema de oxidación.


Por ello podemos decir que la resistencia a la corrosión es la principal diferencia con el imán de Neodimio. Mientras que ambos comparten otras muchas características como son la densidad de energía y también el perfecto uso a temperaturas altas.

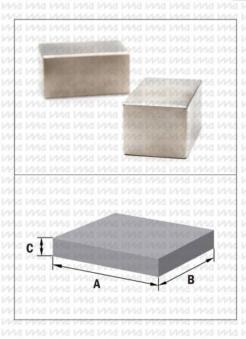

El proceso de fabricación de este tipo de material basado en Tierras Raras resulta bastante complejo. Primero de todo, las materias primas se introducen en un horno donde posteriormente son fundidas y distribuidas en moldes para que más tarde seles otorgue una forma sólida cuando estas se enfríen.

En general, podemos decir que ambos imanes de tierras raras son muy versátiles. Y destacan entre sus propiedades algunas como la flexibilidad, la funcionalidad y la precisión, lo que nos hace poder darle usos casi ilimitados. Son múltiples los campos de aplicación en los que podemos ver su aplicación.

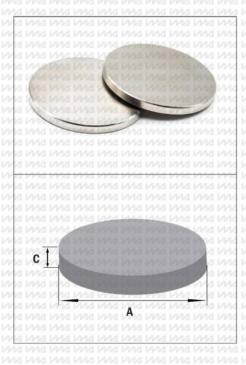
A continuación, se crea un polvo muy fino, a partir de la forma física anterior, que pasa por la fase de sinterización, pasando al estado líquido. En la fase de sinterización las partículas se alinean y quedan unidas para crear piezas densas. Estas piezas obtenidas finalmente se les da la forma y el tamaño que queramos.

Finalmente, el imán de neodimio se magnetiza y ya está elaborado el imán que todos conocemos. Los datos característicos magnéticos se encuentran en las páginas siguientes en forma de diagrama y tablas.

Bloques de Neodimio Medidas estándar (mm)*

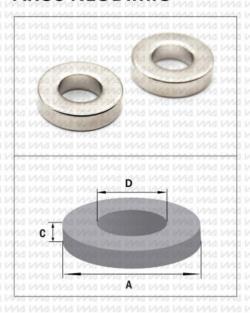

Α	В	С
2,5	1,5	0,6
10	10	14 1514
15	15	3
20	10	5
25	10	14 214
30	10	5.4
35	15	3
40	14 15 4 1	14 1314
50	25	8
60	10	5
70	10	514
80	10	14 1514
90	10	111
100	50	10
100	100	10

Discos de Neodimio Medidas estándar (mm)*


ØA	С
0,7	0,2
3	1 1/1 1/1
M3 M	1.5 M
5	10
8	5
10	11/51/1
10	10
12,5	1,5
15	10
20	11/51/1/
25	5
30	15
40	10
45	10
50	5
60	5

IMANES DE NEODIMIO

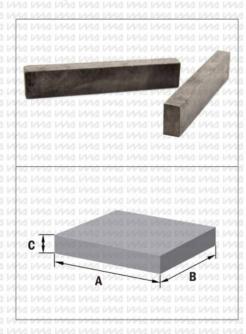
BLOQUES NEODIMIO



DISCOS NEODIMIO

IMANES DE NEODIMIO

AROS NEODIMIO



Aros de Neodimio Medidas estándar (mm)*

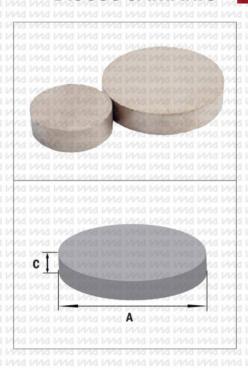
ØA	С	ØD
0,4	0,2	0,2
10	14 514 1	1014
20	10	3
30	10 10	иа 5иа г
40	30	20
50	30 4	1014 l
60	30	5
70	50	Ma 30 Ma I
80	50	2
90	40	ма 5ла і
100	50	5
150	60	15
200	100	15
250	150	15
300	210	77,6

IMANES DE SAMARIO

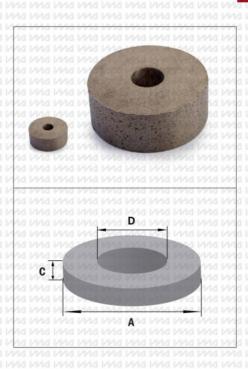
BLOQUES SAMARIO

Bloques de Samario Medidas estándar (mm)*

A	В	c	
rad v	44 l 1 44 l	14 8	
15	6,6	2,8	
20	10	10	
25	12	3	
30	16	5	
40	10	15	
50	10 4	10	
60	16	10 5/1	


Discos de Samario Medidas estándar (mm)*

ØΑ	С
na 1 1 11a 1	4,5
4	2
6	3
6	10
10	Ma 1Ma
10 4	Ma 5Ma
15 1	42
20	5
20	10
25	5
35	Ma 5/10
40	1014
45	va 9/14


Aros de Samario Medidas estándar (mm)*

a inna i	1210 1220	PPIG PVI
ØΑ	С	ØD
7	na 2na	15
8	ma ma ma 5 ma	6
8	5	10
12	4,5	5
12	6,1	440144
16	иа 5иа	11/25/1
22	15	6
40	20	6
70	62	17
98	18	17

DISCOS SAMARIO

AROS SAMARIO

Neodimio

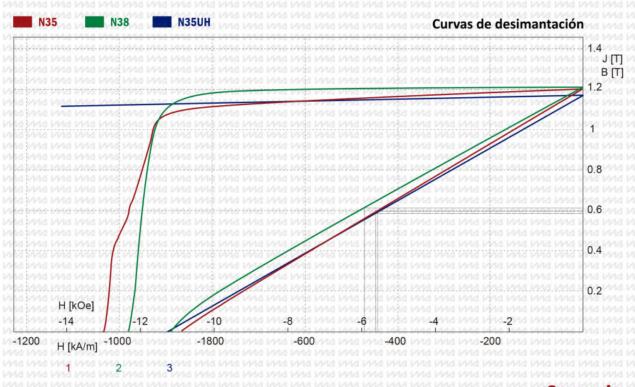
Tabla valores Magnéticos el NEODIMIO 35 (80ºC)

REMANENCIA Br		FUERZA DE CAMPO COERCITIVO Hc			PRODUCTO DE ENERGÍA (BH)			EVERSIBLE	Tª MÁX.
		Hcb		Hci	máx.		Br	Hcj	TRABAJO
Min.	Max.	Min.	Max.	псі	Min.	Max.	(%/°C)	(%/°C)	interviews in
11,2 kG	11,7 kG	10,8 kOe	11,3 kOe	≥ 12 kOe	33,0 MGOe	35,0 MGOe	-0,12	-0,5	≤ 80 °C
1,170 T	1,210 T	860 kA/m	899 kA/m	≥ 955 kA/m	263 kJ/m3	279 kJ/m3		0,12	a inna inna i

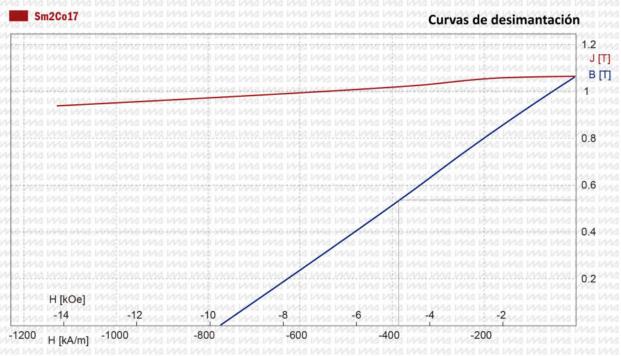
Características del NEODIMIO 38 (80°C)

REMANENCIA		FUERZA DE CAMPO COERCITIVO Hc				PRODUCTO DE COEFICI ENERGÍA (BH) Tª REV		ENTE DE ERSIBLE	Tª MÁX.	
IAAG IAG Brag IAGI I		He	Hcb		n	náx.	Br	Hcj	TRABAJO	
Min.	Max.	Min.	Max.	Hci	Min.	Max.	(%/°C) (%/°C)	Max. (%/°C) (%/°C)	(%/°C)	LANS LANS IN
12,2 kG	12,6 kG	10,8 kOe	11,5 kOe	≥ 12 kOe	36,0 MGOe	38,0 MGOe	-0,12	-0,5	≤ 80 °C	
1,220 T	1,260 T	876 kA/m	923kA/m	≥ 955 kA/m	287 kJ/m3	302 kJ/m3		a ma ma	ma ma n	

Características magnéticas: Ferrita isotrópica Y10T


REMANENCIA			erza de can Oercitivo i		ENER			NTE DE RSIBLE	Tª MÁX.	
Br		Hcb		Hci	máx.		Br	Hcj	TRABAJO	
Min.	Max.	Min.	Max.	псі	Min. Max.	Min.	Max. (%	(%/°C) (%/°C)	(%/°C)	110 7016 10
11,7 kG	12,1 kG	10,8 kOe	11,4 kOe	≥ 25 KOe	33,0 MGOe	35,0 MGOe	-0,1	-0.5	≤ 180 °C	
1,170 T	1,210 T	860 kA/m	907 kA/m	≥ 1990 kA/m	263 kJ/m3	279 kJ/m3		a ma m	a Mad Mad	inia ina in

Samario


Características del SAMARIO Sm2Co17

REMAN		100	RZA DE CAN DERCITIVO H		PRODUCTO DE ENERGÍA (BH)		COEFICIENTE DE TEMP. REVERSIBLE		Tª MÁX.	
В	r.	Н	cb	ttet	m	iáx.	Br	Hcj	TRABAJO	
Min.	Max.	Min.	Max.	Hci	Min.	Max.	(%/°C)	(%/°C) (%/°C)		
1,02 T	1,08 T	680 kA/m	730 kA/m	> 1600 kA/m	200 kJ/m³	215 kJ/m³	-0.04	0,04 -0,3	≤ 300 °C	
10,2 kG	10,8 kG	8,5 kOe	9,2 kOe	> 20,1 kOe	25,1 MGOe	27,0 MGOe	ma ma ma m	a una una a una una		

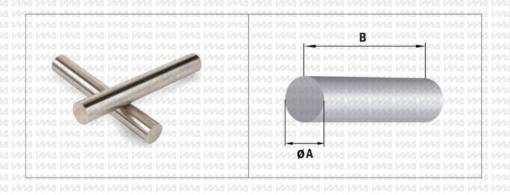
Neodimio

Samario

BASES MAGNÉTICAS

Las bases magnéticas son imanes protegidos por una carcasa metálica. Tienen la ventaja que sólo imantan por una cara, estando las otras caras libres de campo magnético. Todo es tipo de sistemas están protegidos con una carcasa metálica, lo que evita la ruptura del imán y garantiza una mayor seguridad en el trabajo.

Hay que tener en cuenta que, cuando incrementemos la temperatura de los imanes hasta el máximo permitido, la fuerza magnética del imán se reduce entre el 30% y el 40%. Esta pérdida es sólo temporal. Cuando se disminuye la temperatura, la fuerza magnética recupera su valor original. Es importante tener en cuenta que, en caso de exceder la temperatura máxima permitida, el imán podría quedar dañado de forma irreparable.


BASES DE ÁLNICO

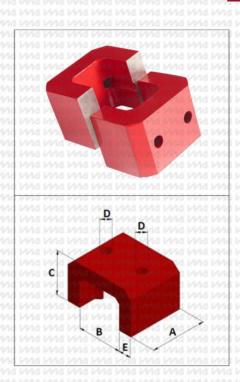
La base de álnico está compuesto por aluminio, níquel y cobalto. Este tipo de imán posee una inducción remanente muy elevada, pero una coercitividad muy baja. Asimismo, presenta una gran estabilidad en temperaturas extremas, manteniendo sus características magnéticas entre -250 °C y 425 °C.

Barras cilíndricas imantadas Medidas estándar (mm)*

BARRAS CILÍNDRICAS IMANTADAS

Las varillas de álnico o barras de álnico están formadas por imanes de aluminio, níquel y cobalto. Los imanes de álnico tienen una fuerza coercitiva baja que coarta las aplicaciones de este imán. En la siguiente tabla presentamos algunas de las medidas estándar. Están imantadas con los polos en los extremos N-S.

ØA	В
1,2	M8 M
3 / 3	10
3	100
4	150
5	150
6	35
M4 6 M4	150
ma 7ma	10 m
8	75
8	150
10	30
10	150
12	150
15	150
20	150

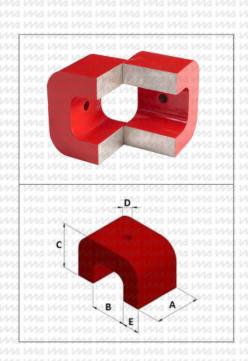

PUENTE DOS AGUJEROS PASANTES

Está provisto de dos agujeros centrales de fijación, con el propósito de facilitar su adaptación en guías, líneas de transporte, etc.

Puente dos agujeros pasantes: Medidas estándar (mm)*

Código	A	В	С	D	E	Fza. Kg.	Fza. N.
BASA01323	25.5	21	25.5	5	9.4	na 1 7 na 1	70
BASA01292	44.5	35	35	8	11	15	150
BASA01294	57	41	41	8	14.5	33	330
BASA01295	82.5	48	54	10	16	50	500

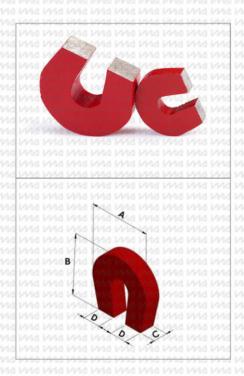
^{*}Los datos de la tabla reflejados para cada tipo de base magnética, nos muestran los valores de fuerza sobre una chapa de 10mm.



PUENTE UN AGUJERO PASANTES CENTRAL

Puente un agujero pasante: Medidas estándar (mm)*

Código	A	В	С	D	E	Fza. Kg.	Fza. N.
BASA01286	19	14	19	4	8	5	50
BASA01290	28.5	22.5	28.5	5	11	10	100

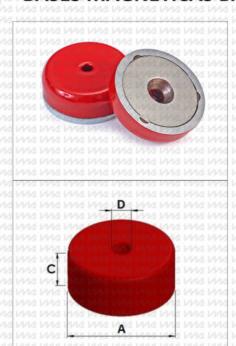

^{*}Los datos de la tabla reflejados para cada tipo de base magnética, nos muestran los valores de fuerza sobre una chapa de 10mm.

^{*}Temperatura máxima de trabajo: 350ºC

^{*}Temperatura máxima de trabajo: 350ºC

IMANES DE HERRADURA

Tipo de imán convencional de una pieza con forma de herradura. Está imantado en sus extremos con un alto nivel de inducción, al igual que es resistente a altas temperaturas. Debido a esto podemos destinarlos a varias aplicaciones en exteriores.


Además, destaca por su gran ventaja que le caracteriza, la cual es que tiene los polos magnéticos muy juntos creando un campo magnético más fuerte.

Imanes de herradura: Medidas estándar (mm)*

Código	A	В	С	D	Fza. Kg.	Fza. N.
IMA701	20	17.4	4.2	и иба и	na v i sa v	10
IMA702	24.5	24.5	6	7	2	20
IMA703	29	25.5	7.9	8	3	30

^{*}Los datos de la tabla reflejados para cada tipo de base magnética, nos muestran los valores de fuerza sobre una chapa de 10mm.

BASES MAGNÉTICAS BAJAS

Están diseñadas para aplicaciones de atracción y están provistas de un armazón de acero. Estas bases magnéticas tienen una gran resistencia a la corrosión y a las condiciones atmosféricas externas.

Son muy útiles cuando se requiere una gran fuerza de sujeción en un espacio reducido o para utilizar en exteriores.

Bases magnéticas bajas: Medidas estándar (mm)*

Código	ØA	С	D	Fza. Kg.	Fza. N.
IMA760	19	8	а и 41 и	ииии	10
IMA761	28.6	119 M	4.5	3.5	3514
IMA762	38	10.5	7.5	8	80

^{*}Los datos de la tabla reflejados para cada tipo de base magnética, nos muestran los valores de fuerza sobre una chapa de 10mm.

^{*}Temperatura máxima de trabajo: 350ºC

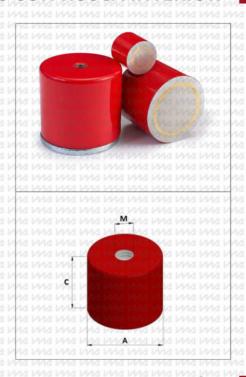
^{*}Temperatura máxima de trabajo: 350ºC

BASES MAGNÉTICAS CON ROSCA INTERIOR

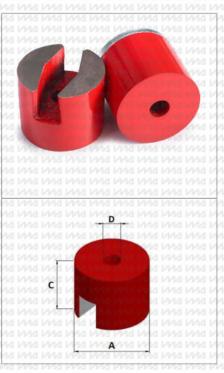
La base de álnico con rosca interna, también conocido como imán en recipiente plano, es un imán que posee un agujero en forma de rosca que se encuentra en el medio de la copa de hierro y el imán de disco solido se halla intercalado en el interior. El agujero no traspasa en su totalidad la base magnética.

Bases magnéticas altas: Medidas estándar (mm)*

Código	ØA	В	С	Fza. Kg.	Fza N.
BASA01302	17	16	M6	1.5	15
BASA01303	22	19	M6	2.5	25
BASA01304	27	25.4	M6	6	60
BASA01305	35	30	M6	12	120
BASA01291	30	35	M6	10.5	105
BASA01306	40	35	M6	15	150

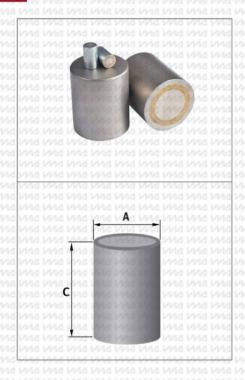

^{*}Los datos de la tabla reflejados para cada tipo de base magnética, nos muestran los valores de fuerza sobre una chapa de 10mm.

Es un imán cilíndrico tipo "herradura". Los polos están en un extremo del cilindro. Se utilizan en sistemas de atracción.


Botón: Medidas estándar (mm)*

Código	ØA	C	D	Fza. Kg.	Fza. N.
BASA01308	12.5	9.5	9.5	0.7	7
BASA01309	19	12.5	5	1.9	19
BASA01310	25.5	16	5.5	3.4	34
BASA01311	31.5	25.5	7.5	4.8	48

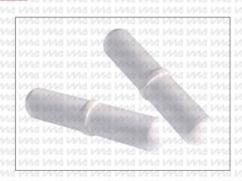
^{*}Los datos de la tabla reflejados para cada tipo de base magnética, nos muestran los valores de fuerza sobre una chapa de 10mm.


BOTÓN

^{*}Temperatura máxima de trabajo: 350ºC

^{*}Temperatura máxima de trabajo: 350ºC

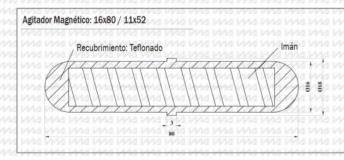
BASE MAGNÉTICA CON ARMAZÓN


Son una clase de imán de Álnico con un armazón de acero. Este tipo de bases, están imantadas en una cara, dejando el resto libre de campo magnético y al estar protegidas, se evita el riesgo de rotura o agrietamiento.

Medidas estándar (mm)*

Código	ØA	C	Fza. Kg.	Fza. N.
BASA01312	6	10	0.17	1.7
BASA01313	8	12	0.4	4
BASA01314	10	16	0.85	8.5
BASA01315	13	18	1.2	12
BASA01316	16	20	M2 M	20
BASA01317	20	25	5	50
BASA01318	25	30	8	80
BASA01319	32	35	10	100
BASA01320	40	45	15	150
BASA01321	50	50	30	300
BASA01322	63	60	40	400

*Los datos de la tabla reflejados para cada tipo de base magnética, nos muestran los valores de fuerza sobre una chapa de 10mm.

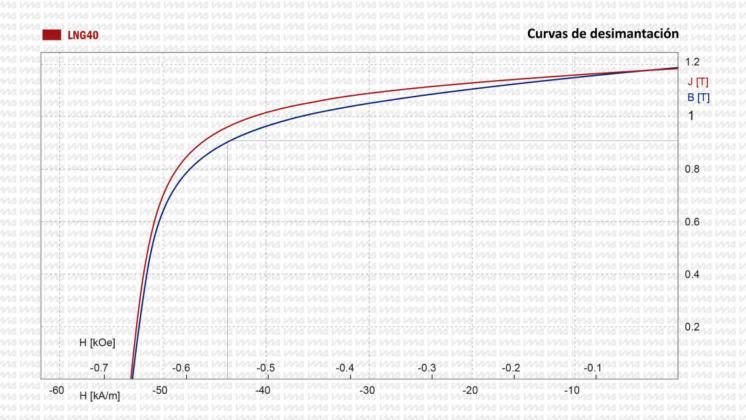

AGITADORES MAGNÉTICOS



Un agitador magnético (también llamado pulga, frijol o bala magnética) es una pequeña barra magnética (barra de agitación), normalmente cubierta de plástico y otro polímero (Teflón) y una placa debajo de la cual se crea un campo magnético rotatorio.

Funcionamiento: El agitador magnético normalmente se introduce en un vaso de precipitados o matraz, conteniendo algún líquido para agitarlo. Este contenedor de líquidos se coloca sobre el campo rotatorio, el cual hace girar "la pulga" y esta agita y revuelve el líquido.

Los agitadores magnéticos son preferidos en vez de los mecanismos de engranes debido a que son más silenciosos, eficientes, no se rompen y son fáciles de limpiar y esterilizar.


^{*}Temperatura máxima de trabajo: 350ºC

Álnico

Características del Álnico LNG40

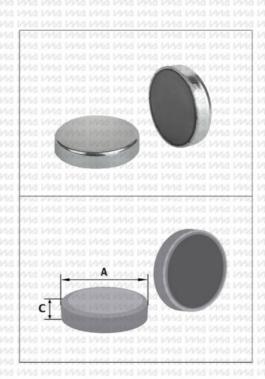
REMANE	NCIA (Br)	-	ERZA DE CAI OERCITIVO I		DE ENERGIA TE REVERSIRI E		COEFICIENTE DE Tª REVERSIBLE		DE ENERGIA Tª REVERSIBLE		Tª MÁX. TRABAJO	
Br		Hcb			(BH)	max.	%Br	%Hci	110101010			
Min.	Max.	Min.	Max.	Hci	Min.	Max.	(%/°C)	(%/°C)	Tw			
1,20 T	1,24 T	46 kA/m	48 kA/m	> 46 kA/m	37 kJ/m³	40 kJ/m³	-0.02	-0.02	≤ 425 °C			
12,0 kG	12,4 kG	0,58 kOe	0,60 kOe	> 0,58 kOe	4,6 MGOe	a waa waa waa waa waa waa waa waa wa	-0,02 +0,01	ma ma i				

Álnico

BASES MAGNÉTICAS

BASES MAGNÉTICAS DE FERRITA

Las bases magnéticas de ferrita están fabricadas mediante una alineación de óxidos de hierro y estroncio. Pese a tener una forma parecida a los discos magnéticos, se encuentran inducidos en el interior de un recipiente para proteger el cuerpo del imán y potenciar sus propiedades magnéticas. Soportan temperaturas de trabajo de hasta 250 °C.


SISTEMA MAGNÉTICO CERÁMICO

Gracias a su bajo peso y gran superficie son perfectos para su aplicación en cualquier sistema de sujeción.

Base Magnética Cerámica: Medidas estándar (mm)*

Código	ØA	С	Peso Gr.	Fza. Kg.	Fza. N.
BASF01348	10	4.5	2	0.2	2
BASF01351	13	4.5	лла 3 1ла 1	0.5	14 1514
BASF01352	16	4.5	4.5	1.5 a k	15
BASF01353	20	6	10	2.5	25
BASF01354	25	7	19	4	40
BASF01356	32	7	30	ma igna k	70
BASF01357	36	8	40	10	100
BASF01358	40	mas na	M45514 I	12.5	125
BASF01360	50	10	100	22	220
BASF01362	63	14	230	35	350
BASF01363	80	18	458	60	600
BASF01349	100	22	900	90	900
BASF01350	125	26	1680	120	1200

^{*}Los datos de la tabla reflejados para cada tipo de base magnética, nos muestran los valores de fuerza sobre una chapa de 10mm.

^{*}Temperatura máxima de trabajo: 250ºC

BASES MAGNÉTICAS DE FERRITA

SISTEMA MAGNÉTICO CERÁMICO PASANTE

Está provisto de un agujero pasante con el fin de proporcionar una mayor facilidad de fijación.

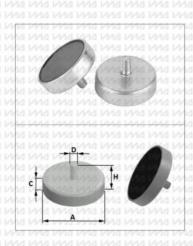
Agujero avellanado: Medidas estándar (mm)*

Código	ØA	С	d1	d2	Peso Gr.	Fza. Kg.	Fza. N.
BASF01374	16	4.5	3.5	7.4	4.00	0.7	na 171a
BASF01375	20	6	4.2	9.8	9	2.2	22
BASF01376	25	иза Г 7 1а и	14 5.5 144	12 12	M16713	3.6	36
BASF01379	32	7	5.5	12	27	7.2	72
BASF01380	40	Ma 1814 M	5.5	12	M 53 M	Ma 8 M	80
BASF01351	50	10	8.5	22	90	16	160

Agujero sin avellanar: Medidas estándar (mm)*

Código	ØA	С	d1	d2	Peso Gr.	Fza. Kg.	Fza. N.
BASF01538	50	10 a V	14 V8.5 VV	22 //	90	via 141a i	140
BASF01381	63	14	6.5	24	195	25	250
BASF01383	80	18	6.5	11.5	478	45	450
BASF01372	100	22	10.5	34	820	60	600

^{*}Los datos de la tabla reflejados para cada tipo de base magnética, nos muestran los valores de fuerza sobre una chapa de 10mm.

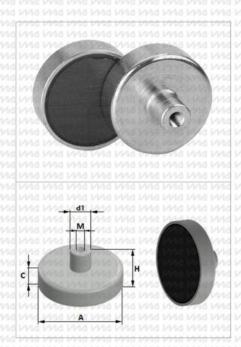

BASE MAGNÉTICA CON ROSCADO EXTERIOR

Provistas de una métrica exterior, pueden ser utilizadas en diferentes sistemas de fijación.

Bases magnéticas con roscado exterior: Medidas estándar (mm)*

Código	ØA	В	C	D	Peso Gr.	Fza. Kg.	Fza. N.
BASF01339	10	4.5	11.5	3	3	0.2	2
BASF01340	13	4.5	11.5	3	5	0.5	5
BASF01341	16	4.5	11.5	3	6	1.5	15
BASF01342	20	Ma 614 M	13	1 M3 M	4 111144	2.5	25
BASF01343	25	nna i 7 na iz	15 14	1 MA 100	22/10	nia 4 na i	40
BASF01344	32	7	15	4	32	8	80

^{*}Los datos de la tabla reflejados para cada tipo de base magnética, nos muestran los valores de fuerza sobre una chapa de 10mm.

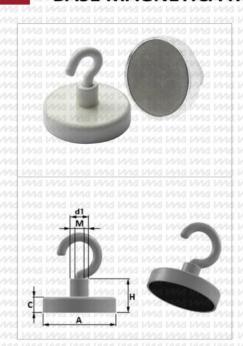


^{*}Temperatura máxima de trabajo: 250ºC

^{*}Temperatura máxima de trabajo: 250ºC

BASES MAGNÉTICAS FERRITA

BASE MAGNÉTICA CON ROSCADO INTERIOR


Provisto de un pequeño resalte con una métrica de diferentes dimensiones en función del diámetro y peso del imán.

Base Magnética con Roscado interior: Medidas estándar (mm)*

Código	ØA	С	Н	d1	M	Peso Gr.	Fza. Kg.	Fza. N.
BASF01324	10 10	4.5	11.5	MM6MM	ина зига	Ma 1314 M	0.2	M M 2
BASF01327	13	4.5	11.5	6	3	5	0.5	5
BASF01328	16	4.5	11.5	6	3	6	1.5	15
BASF01329	20	0 1/6 m	13	m6m	ma 3ma	иа 11 а и	2.5	25
BASF01330	25	7	15	8	4	22	4	40
BASF01331	4 / 32 ///	a 144 7 1 1441	1/15///	M8 Ma	inna 4ma	MA 32 A M	14 V84 V	80
BASF01332	36	8	16	8	4	45	10	100
BASF01333	40	8	18	10	ила 5 ила	60	12.5	125
BASF01335	50	10	22	12	6	110	22	220
BASF01337	63	14	30	15	8	240	35	350
BASF01338	a 1/80 1/1	18 //	34 //	20 //2	M10M	520	60	600
BASF01325	100	22	43	22	12	940	90	900
BASF01326	125	26	50	25	14	1720	120	1200

^{*}Los datos de la tabla reflejados para cada tipo de base magnética, nos muestran los valores de fuerza sobre una chapa de 10mm.

BASE MAGNÉTICA ROSCADO CON GANCHO

Imanes de techo circulares pintados de blanco y con gancho abierto. Disponemos de una amplia gama de imanes con gancho para aplicaciones publicitarias, almacenes, supermercados, etc.

El modelo estándar se fabrica en color blanco, aunque bajo pedido, se puede suministrar en otros colores. Las fuerzas magnéticas de cada medida figuran en la tabla siguiente:

Base Magnética Roscado con gancho: Medidas estándar (mm)*

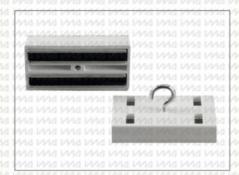
Código	ØA	C	Н	d1	M	Peso Gr.	Fza. Kg.	Fza. N.
BASF01364	a 1/16 1/1/	4.5	111.5	има6ила	ma 3 ma	Ma 1614 M	14 11.5 14	4 1/15
BASF01365	20	6	13	6	3	11	2.5	25
BASF01366	25	a 141 7 1411	1/15///	8 //4	ma 4ma	22	34 M44 M	40
BASF01367	32	7	15	8	4	32	8	80
BASF01368	40	8	16.5	8	4	60	12.5	125
BASF01369	50	a 10 m	22	M 12 M	ma4ma	110	14	140
BASF01370	63	14	30	15	4	240	35	350

^{*}Los datos de la tabla reflejados para cada tipo de base magnética, nos muestran los valores de fuerza sobre una chapa de 10mm.

^{*}Temperatura máxima de trabajo: 250ºC

^{*}Temperatura máxima de trabajo: 250ºC

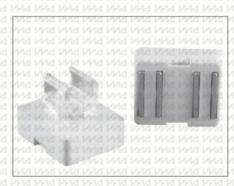
BASES MAGNÉTICAS FERRITA


IMANES DECORATIVOS CON CUERPO DE PLÁSTICO

Este tipo de bases magnéticas cuadradas y rectangulares acabado en color blanco y negro son utilizadas en multitud de aplicaciones, por ejemplo: fijación de piezas, aplicaciones publicitarias, almacenes, grandes superficies. Gracias a su acabado y su gran fuerza magnética, el abanico de posibilidades es muy grande.

Medidas estándar (mm)*

Código	Largo mm.	Ancho mm.	Alto mm.	Peso Gr.	Fza. Kg.	Fza. N.	Fijación
BASF01476	53 a n	27.5	28	53	15	150	GANCHO ABIERTO


^{*}Los datos de la tabla reflejados para cada tipo de base magnética, nos muestran los valores de fuerza sobre una chapa de 10mm.

Medidas estándar (mm)*

Código	Largo	Ancho	Alto	Fza.	Fza.
	mm.	mm.	mm.	Kg.	N.
BASF01471	34	29	28	7	70

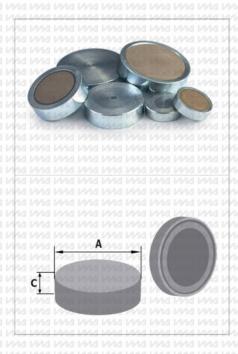
^{*}Los datos de la tabla reflejados para cada tipo de base magnética, nos muestran los valores de fuerza sobre una chapa de 10mm.

Medidas estándar (mm)*

Código	Dimensiones	Alto mm.	Diam. Tubo.	Peso	Temp. C°	Fza. Kg.	Fza. N.
BASF01478	34x29	34	414 14 M	80	80	10	100

^{*}Los datos de la tabla reflejados para cada tipo de base magnética, nos muestran los valores de fuerza sobre una chapa de 10mm.

BASES MAGNÉTICAS NEODIMIO


Los sistemas magnéticos de calidad de neodimio soportan una temperatura máxima de trabajo de 80ºC. Bajo pedido, podemos suministrar piezas de neodimio especial con una temperatura de 150ºC.

Este tipo de bases magnéticas, gracias a su bajo peso y su gran fuerza de sujeción, constituyen el medio ideal para realizar cualquier tipo de aplicación.

Gracias a su sistema de sujeción, permiten manipular y trabajar con mayor flexibilidad y comodidad.

Este sistema es el medio ideal para la sujeción de piezas en espacios muy reducidos, dónde se necesita una gran fuerza magnética.

SISTEMA MAGNÉTICO BÁSICO

Este tipo de bases magnéticas, gracias a su bajo peso y su gran fuerza de sujeción, constituyen el medio ideal para realizar cualquier tipo de aplicación.

Sistema Magnético Básico: Medidas estándar (mm)*

Código	ØA	С	Peso Gr.	Fza. Kg.	Fza N.
BASN01412	1 M6 M	4.5	има1ма і	иа 0.5 a и	14 1/5
BASN01413	8	4.5	1.5		10
BASN01406	10	14405440	2.5	M4 1.54 M	15
BASN01407	13	4.5	4.5	3	30
BASN01408	16	4.5	6.5	иа (7 14 и	70
BASN01524	20	v 5	15/4	12	120
BASN01410	25	7	22	20	200
BASN01411	32	me 7 me	40	26	260

*Los datos de la tabla reflejados para cada tipo de base magnética, nos muestran los valores de fuerza sobre una chapa de 10mm.

^{*}Temperatura máxima de trabajo: 80ºC

BASE MAGNÉTICA ROSCADO INTERIOR

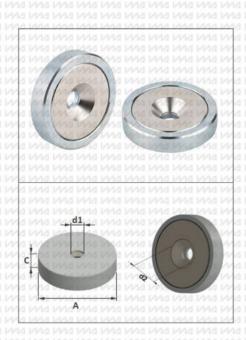
Gracias a su sistema de sujeción, permiten manipular y trabajar con una mayor flexibilidad y comodidad. Las bases de neodimio con roscado interno se puede destinar a varios sectores por su gran fuerza de atracción, característica de los imanes de neodimio.

Base Magnética roscado interior: Medidas estándar (mm) *

Código	ØΑ	С	Н	d1	М	Peso Gr.	Fza. Kg.	Fza. N.
BASN01402	6	4.5	12	W5 W	3	1.7	0.4	M4
BASN01405	8	4.5	11.5	6	3	3	1	10
BASN01388	10	4.5	11.5	M6 M	a 1/3 a 1	na 14 na 1	1.5	15
BASN01390	13	4.5	11.5	6	3	5	4	40
BASN01391	16	4.5	11.5	8	4	8	na 7 ma	70
BASN01392	20	6	13	8	444	15.5	12	120
BASN01393	25	7	14	8	4	27	20	200
BASN01396	/ 32 / V	ма 7 ма	15.5	10 10	a 1/3/4 1/	14414	30	300
BASN01399	40	8	18	10	5	70	55	550
BASN01400	50	10	22	12	6	148	90	900

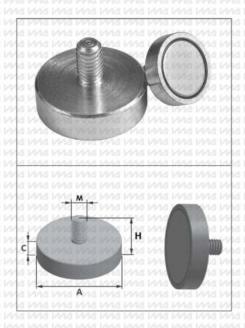
^{*}Los datos de la tabla reflejados para cada tipo de base magnética, nos muestran los valores de fuerza sobre una chapa de 10mm.

Este sistema está provisto de un agujero pasante, dispuesto para facilitar su fijación. Los imanes de copa redonda están creados de un potente imán de disco el cual tiene un orificio de acero inoxidable, en el polo norte está la parte magnética.


Base Magnética Pasante: Medidas estándar (mm) *

Código	ØΑ	С	Ød1	Ød2	Peso Gr.	Fza. Kg.	Fza. N.
BASN01649	8	4.5	ANG IANG	INIA IN	а има и	na inna i	MA W
BASN01519	10	4.5	3	6.5	2.13	1.5	15
BASN01611	16	4.5	3.5	7.25	5.7	4a (7 /4a)	70
BASN01431	20	6	4.5	9.6	12.5	12	120
BASN01622	25	na 711	4.5	9.6	23.5	18	180
BASN01635	32	7.	5.5	11.9	38.5	35	350
BASN01440	40	8	5.5	11.9	74	50	500
BASN01066	50	10	8.5	19.3	140	80	800
BASN01095	63	14	10.5	23.8	320	140	1400
BASN01126	80	18	10.5	23.8	660	250	2500
BASN01127	100	22	12.5	23.8	1290	400	4000

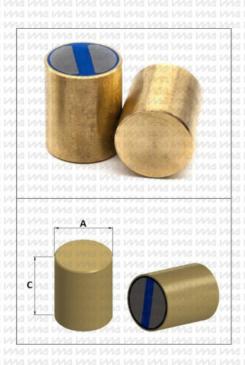
^{*}Los datos de la tabla reflejados para cada tipo de base magnética, nos muestran los valores de fuerza sobre una chapa de 10mm.


BASE MAGNÉTICA PASANTE

^{*}Temperatura máxima de trabajo 80ºC.

^{*}Temperatura máxima de trabajo 80ºC.

BASE MAGNÉTICA ROSCADO EXTERIOR


Provistos de una métrica exterior. Pueden ser utilizados en cualquier sistema de fijación dónde sea preciso un gran poder de sujeción por lo que las podemos destinar a aplicaciones que requieran agarre.

Base Magnética roscado exterior: Medidas estándar (mm) *

Código	ØA	С	н	М	Peso Gr.	Fza. Kg.	Fza. N.
BASN01422	10	4.5	12.5	4	3	1.5	15
BASN01423	13	4.5	12.5	5	5	440	40
BASN01425	16	4.5	12.5	6	7.5	7	70
BASN01426	20	10 1610	16	M6M	16	12	120
BASN01427	25	7	17	6	25	20	200
BASN01428	32	14 1714	17/14	M6 M	48	30	300

^{*}Los datos de la tabla reflejados para cada tipo de base magnética, nos muestran los valores de fuerza sobre una chapa de 10mm.

BASE MAGNÉTICA CILÍNDRICA

Provistos de una métrica exterior. Pueden ser utilizados en cualquier sistema de fijación dónde sea preciso un gran poder de sujeción. Nuestra base magnética de neodimio en forma de cilindro es el medio ideal para la sujeción de piezas en espacios muy reducidos, donde se necesita una gran fuerza magnética.

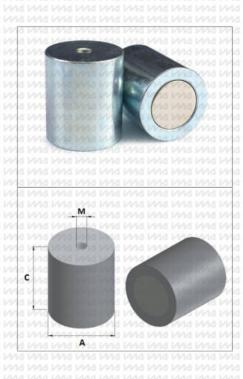
Base Magnética cilindrica: Medidas estándar (mm) *

Código	ØA	С	Peso Gr.	Fza. Kg.	Fza. N.
BASN01420	иа ибта и	20	14.5 M	144 1 144	10
BASN01421	8	20	8	2.5	25
BASN01414	10	20	12.5	I M 5 M	50
BASN01415	13	20	20	1 M 8 M	80
BASN01416	16	20	32	15	150
BASN01417	20	25	M 1/60 M	28	280
BASN01418	25	35	135	45	450
BASN01419	32	40	250	70	700

*Los datos de la tabla reflejados para cada tipo de base magnética, nos muestran los valores de fuerza sobre una chapa de 10mm.

^{*}Temperatura máxima de trabajo: 80ºC

^{*}Temperatura máxima de trabajo: 80ºC

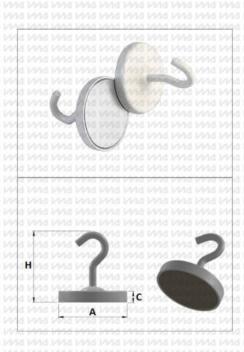

Son un tipo de imán permanente cilíndricos, montados concéntricamente en un armazón de acero que le aporta rigidez. Su aplicación puede ser diversa y normalmente se utilizan en aplicaciones de adherencia y en lugares semisecos. Las bases de neodimio alta con rosca interior tienen un volumen relativamente reducido él nos permite mayor facilidad para trabajar con ellos.

Bases Magnéticas altas: Medidas estándar (mm)*

Código	ØA	c	М	Fza. Kg.	Fza. N.
BASN01102	17/1	16	M6	аибаи	60
BASN01103	22	19	M6	12	120
BASN01104	27	25,5	M6	15	150
BASN01105	35	30	M6	28	280
BASN01106	30	35	M6	20	200
BASN01107	40	35	M6	55	550
BASN01108	50	40	M6/M8	60	600
BASN01109	60	45	M6	85	850

^{*}Los datos de la tabla reflejados para cada tipo de base magnética, nos muestran los valores de fuerza sobre una chapa de 10mm.

BASE MAGNÉTICA ALTA


BASE MAGNÉTICA CON GANCHO

Las bases magnéticas de neodimio con gancho es una buena elección para pegar o sostener sin tener que perforar la pared. Los imanes de gancho circulares son blancos y con gancho abierto para aplicaciones publicitarias, almacenes supermercados, etc...

Base magnética con gancho: Medidas estándar (mm)*

Código	ØA	C	Н	Peso gr.	Fza. Kg.	Fza. N.
BASN0052	23,5	M4 W	21,8	14	8,5	85

*Los datos de la tabla reflejados para cada tipo de base magnética, nos muestran los valores de fuerza sobre una chapa de 10mm.

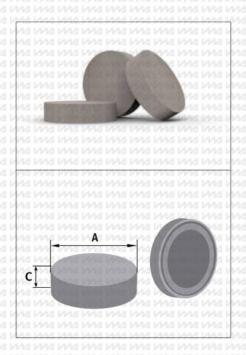
^{*}Temperatura máxima de trabajo 80ºC

^{*}Temperatura máxima de trabajo 80ºC.

BASES MAGNÉTICAS SAMARIO

BASES MAGNÉTICAS SAMARIO

Las bases de samario están destinadas mayoritariamente a aplicaciones que requieran una elevada fuerza magnética y una alta temperatura de trabajo.


Este sistema se utiliza en procesos en los que sea necesario una gran fuerza magnética y una temperatura de trabajo elevada (max. 350 °C).

Este tipo de sistemas se fabrican en diferentes versiones: provistos de una carcasa metálica, con un pequeño resalte de métrica en diferentes dimensiones en función del diámetro y el peso del imán, o bien provistas de un entrehierro en la parte central, lo que nos permite conseguir un mayor poder de atracción.

Las bases de samario las podemos emplear para la sujeción en interior de hornos, bombas de temperatura, turbinas eólicas y sensores de coches.

SISTEMA MAGNÉTICO BÁSICO

Las bases magnéticas cilíndricas de samario son muy resistentes a la desmagnetización, la corrosión y las condiciones atmosféricas adversas. Además, están fabricadas con un pequeño entrehierro en la parte central para potenciar su campo magnético y conseguir un gran poder de atracción mayor.

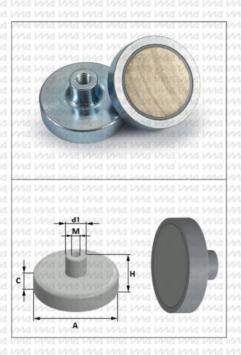
Bases magnéticas Samario: Medidas estándar (mm) *

Código	ØA	C	Peso Gr.	Fza. Kg.	Fza N.
BASS01466	6	4,5	na in a in	0,4	4
BASS01467	MA 8 MA I	4,5	14 1,5	0,8	8
BASS01460	10	5	2,5	1,5	15
BASS01461	13	4,5	4,5	3,5	35
BASS01462	16	4,5	6,5	1 W 5 W	50
BASS01463	20	6	15	10	100
BASS01464	25	14a 1 7 4a 1	14 22 1/	16	160
BASS01465	32	7	40	22	220

*Los datos de la tabla reflejados para cada tipo de base magnética, nos muestran los valores de fuerza sobre una chapa de 10mm.

^{*}Temperatura máxima de trabajo: 150ºC

BASES MAGNÉTICAS SAMARIO

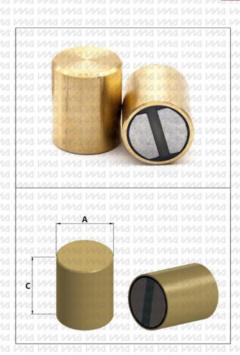

BASE MAGNÉTICA ROSCADO INTERIOR

Esta base magnética está provista de un pequeño resalte con una métrica de diferentes dimensiones en función del diámetro y peso del imán. Las bases de samario con roscado interior se venden con un recubrimiento metálico.

Base Magnética roscado interior: Medidas Estándar (mm) *

Código	ØA	С	Н	d1	M	Peso Gr.	Fza. Kg.	Fza. N.
BASS01457	6	4,5	12	5	3	1,5	0,4	4
BASS01459	8	4,5	11,5	14614	14 1314	Ma2Ma	0,8	8
BASS01451	10	4,5	11,5	6	3	3	1,5	15
BASS01452	13	4,5	11,5	6	3	MagMa	3,5	35
BASS01453	16	4,5	11,5	8	414	7,5	W 5	50
BASS01454	20	6	13	8	4	16	10,5	105
BASS01455	25	14 7/14	14	14814	141414	25	16	160
BASS01456	32	7	15,5	10	5	48	22	220

^{*}Los datos de la tabla reflejados para cada tipo de base magnética, nos muestran los valores de fuerza sobre una chapa de 10mm.


BASE MAGNÉTICA CILÍNDRICA

Este tipo de bases están fabricadas con un pequeño entrehierro en la parte central, lo que nos permite conseguir un gran poder de atracción. La base magnética cilíndrica de samario es muy resistente a la desmagnetización, la corrosión y las condiciones atmosféricas adversas.

Base Magnética cilíndrica: Medidas Estándar (mm) *

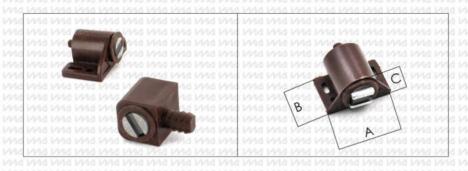
Código	ØA	С	Peso Gr.	Fza. Kg.	Fza N.
BASS01449	6	20	4.5	1 Maj Mad	10
BASS01450	ma 8 1a v	20 20	na v8a vv	2.5	25
BASS01443	10	20	12.5	3.5	35
BASS01444	MA 1314 M	20	20	8 ///	80
BASS01445	16	20	32	12.5	125
BASS01446	20	25	60	23	230
BASS01447	25 a v	35	135	40	400
BASS01448	32	40	250	60	600

^{*}Los datos de la tabla reflejados para cada tipo de base magnética, nos muestran los valores de fuerza sobre una chapa de 10mm.

^{*}Temperatura máxima de trabajo 150ºC.

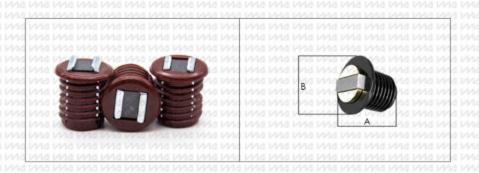
^{*}Temperatura máxima de trabajo 150ºC

CIERRES MAGNÉTICOS


IMANES DE BLOQUEO

Medidas estándar (mm) *

Código	Α	В	c
VARL05885	45	14	13
VARL05886	45	19/19	/// 12
VARL05887	a 1/31 1/1/	19 //	11,3
VARL05888	60	16	15,3
VARL05889	49,5	19,6	11
VARL05890	52	17	15,3
VARV05745	84	10	13,5
VARV02048	32,5	11,5	12,5
PLAG01910	105	20	111


IMANES AJUSTABLES

Medidas Estándar (mm) *

Código	А	В	С
VARL05891	30,5	29	19
VARL05892	30	29	20
VARL05894	15,5	16,5	15

IMANES DE ENCAJE

Medidas Estándar (mm) *

Código	Α	В
VARL05893	16	16,4

SOPORTES MAGNÉTICOS

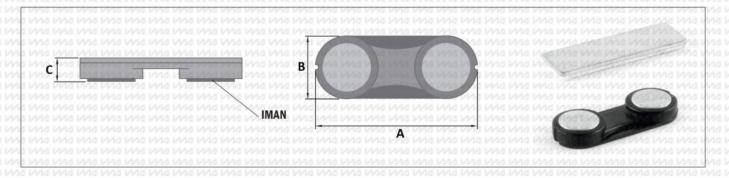
SOPORTE PARA CUCHILLOS Y HERRAMIENTAS

Los soportes magnéticos para herramientas y cuchillos se pueden usar en cualquier lugar donde se necesite tenerlos a mano o almacenados, de una manera visible y cercana. Las aplicaciones más típicas son en talleres, fábricas y grandes cocinas, ya que es una manera práctica y sencilla de tener ordenadas las herramientas de trabajo en un espacio reducido.

Podemos encontrar soportes magnéticos para cuchillos y herramientas en acabado en negro o blancos. Estos sistemas magnéticos se pueden utilizar en cualquier superficie metálica.

Medidas Estándar (mm) *

Código	Longitud (mm)	Color
ACC001438	300	Blanco
ACC001439	300	Negro
ACC001127	460	Blanco
ACC001128	460	Negro


SOPORTE DE NEODIMIO

Este tipo de abrazaderas fabricadas con imanes de Neodimio, son ideales para sujetar tarjetas de visita, etiquetas, pases de exhibición, etc. Son muy fáciles de usar, al estar compuestas por una cinta autoadhesiva en el rectángulo metálico, detrás de la cual se sujeta la unidad de imán para así sujetar y exhibir cualquier tipo de artículo.

Su colocación es muy sencilla, ya que disponen de una cinta autoadhesiva en la chapa metálica para poder sujetar cualquier producto a exponer y sujetarlo mediante los imanes por la parte posterior.

Medidas Estándar (mm) *

Código	Α	В	C
VARV03333	Ma 32/14 M	10,3	4,7

CINTAS MAGNÉTICAS

TIPO CM1 ISOTRÓPICA

Imantada multipolar en una cara, ofrece una fuerza de sujeción adecuada para una amplia gama de aplicaciones.

^{*} Temperatura máxima de trabajo 80°C

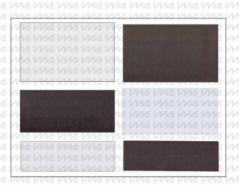
Código	Inducción	Coercitividad	Energía Max
CM-1	1600	1200/1250	ia inna in j a inna in

CINTA MAGNÉTICA

Poseen una gran versatilidad, ya que es un medio rápido y eficaz de realizar fácilmente la organización de almacenes, supermercados, áreas comerciales, etc. Se fabrica de manera predeterminada de color marrón, pero bajo petición del cliente puede ser de cualquier otro color. Está imantada en una sola cara.

^{*} Temperatura máxima de trabajo 80°C

Anchura	Espesor	Long. de rollo
8mm	4mm 1/1	1/1/4 1/50mts 4 1/1/
10mm	1.3mm	50mts
10mm	2mm	50mts
10mm	3mm	50mts
12.5mm	1.5mm	50mts
15mm	3mm1 W	///a // 50mts // //
20mm	1.3mm	50mts
20mm	2mm	50mts
26mm	1.3mm	50mts
26mm	2mm	50mts
39mm	1.3mm	1/1/2 / 50mts / 1/1
40mm	2mm	50mts
50mm	1.3mm	50mts
50mm	1.5mm	50mts
50mm	2mm	50mts
70mm	1.3mm	50mts

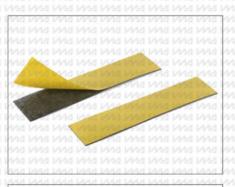

CINTA MAGNÉTICA PVC BLANCO

Este tipo de cinta magnética PVC está disponible en diferentes dimensiones. Constituye un sistema cómodo y práctico de referenciar, fácil de escribir y manipular y sin límite de utilización.

Es resistente al agua, alcohol, carbonato sódico y otros agentes.

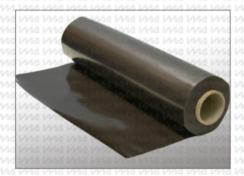
Anchura	Espesor	Long. de rollo
20mm	4 1.3mm 1/4	a 1444a 150mts 444 144
20mm	2mm	50mts
26mm	1.3mm	50mts
39mm	1.3mm	50mts
50mm	1.3mm	50mts

^{*}Temperatura máxima de trabajo 80ºC.



CINTA ADHESIVA

Cubierta por adhesivo en su cara no magnética para que pueda ser aplicado sobre superficies no metálicas


Anchura	Espesor	Long. de rollo
10mm	1.3mm	50mts
10mm	2mm	50mts
12mm	1.5mm	50mts
20mm	1.3mm	2 V// 2 50mts 4 V/
20mm	2mm	50mts
26mm	1.3mm	50mts
39mm	1.3mm	50mts

^{*}Temperatura máxima de trabajo 80ºC.

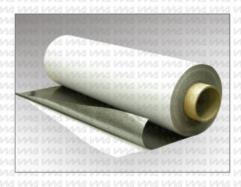
CINTA NATURAL (BOBINA)

Se presentan en bobinas, lo que permite una mayor posibilidad de aplicación. Sus usos pueden ser muy amplios: cartelerías, rotulación de vehículos, publicidad, etc.

Anchura	Espesor	Long. de rollo
610mm	0.5mm	1/10 30mts
1000mm	0.4mm	30mts

^{*}Temperatura máxima de trabajo 80 °C

CINTA MAGNÉTICA PVC BLANCO (BOBINA)



Se presentan en bobinas y poseen un recubrimiento de vinilo blanco en su cara no magnética.

Anchura	Espesor	Long. de rollo
610mm	0.5mm	20mts
610mm	0.9mm	15mts

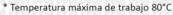
^{*}Temperatura máxima de trabajo 80 °C

CINTA MAGNÉTICA ADHESIVA (BOBINA)

Se trata de una cinta magnética en formato bobina. Es uno de los medios más utilizados en publicidad de cualquier dimensión.

Anchura	Espesor	Long. de rollo
610mm	0.5mm	30mts

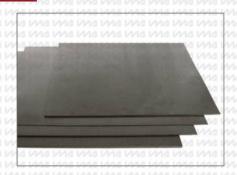
^{*}Temperatura máxima de trabajo 80 °C


ETIQUETAS MAGNÉTICAS

Pueden suministrarse a diferentes medidas, siempre con la siguiente presentación: etiqueta + plástico + cartulina

- No raya la superficie
- Acabado de alta calidad
- Con protector transparente
- Fácil y cómoda lectura
- Sin límite de utilización
- Gran adherencia

Código	Anchura	Espesor	Long. de rollo
CM1E0044	15mm	1.3mm	25mts
CM1E0045	25mm	1.3mm	25mts
CM1E0046	30mm	1.3mm	25mts
CM1E0047	40mm	1.3mm	25mts
CM1E0048	50mm	1.3mm	44 25mts
CM1E0049	70mm	1.3mm	25mts

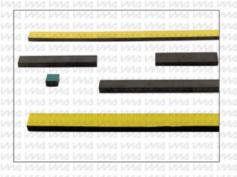

TIPO CM2 ANISOTRÓPICA

Gracias a la orientación dada por sus partículas magnéticas, este material posee una mayor fuerza de atracción. Está imantado por sus dos caras, lo que lo hace perfecto para innumerables aplicaciones.

Código	Inducción	Coercitividad	Energía Max.
CM-2	2400	1900/1950	na maa 14 1a ma

^{*} Temperatura máxima de trabajo 80°C

PLANCHAS



Esta cinta permite, gracias a la orientación de sus partículas magnéticas, la posibilidad de imantarla en sus dos caras. Consiguiendo con ello un mayor poder de sujeción. La presentación se realiza en placas de 1 metro.

Anchura	Espesor	Long. de rollo
420mm	1.5mm	1000mm
420mm	2mm	1000mm
420mm	3mm	1000mm
420mm	4mm	1000mm
420mm	5mm	1000mm
420mm	6mm	1000mm
420mm	7mm	1000mm
420mm	8mm	1000mm

^{*}Temperatura máxima de trabajo 80°C

CINTA NATURAL

Gracias a su gran poder de atracción, se puede utilizar en cualquier superficie. Su campo de aplicación abarca desde las fijaciones porta-esquí, hasta las publicidades de los taxis. Se pueden suministrar en planchas o tiras, adaptándose siempre a las necesidades de nuestros clientes.

Anchura	Espesor	Longitud
20-50-100mm	1.5-2-3mm	100-200-500-1000mm
20-50-100mm	4-5-6mm	100-200-500-1000mm
20-50-100mm	7-8mm	100-200-500-1000mm

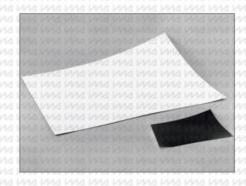
^{*}Temperatura máxima de trabajo 80°C

CINTA TROQUEL DISCOS/AROS

Estos discos y aros se pueden fabricar en medidas especiales, gracias a su flexibilidad se pueden utilizar en multitud de aplicaciones.

*Temperatura máxima de trabajo 80°0	*Temperatura	máxima	de	traba	0	80°C
-------------------------------------	--------------	--------	----	-------	---	------

*Temperatura máxima de trabajo 80°C


Ømm	Ømm	Espesor
17,8mm	12,9mm	1.5mm
18mm	10,2mm	1.5mm
29mm	16mm	2mm
37mm	17mm	2mm
46,5mm	24mm	2mm
46,5mm	28mm	3mm
48mm	42mm	3mm
101,5mm	14mm	3mm

Papel magnético de color blanco para impresoras inkjet, en el que el dorso contiene una fina capa magnética, para poder imprimir de forma fácil y limpia. Se puede colocar sobre cualquier superficie metálica.

Este tipo de papel magnético tiene muchas aplicaciones como la impresión de fotos, puzles, imágenes, dibujos,etc.

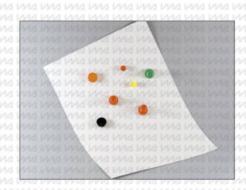
Tamaño Din-A4. Se vende en paquetes de 10 unidades.

PAPEL MAGNÉTICO

SOBRES MAGNÉTICOS

Bolsas de plástico con 1 cara imantada y 1 cara transparente. Permiten una señalización limpia y precisa. Se pueden adherir sobre cualquier superficie metálica (estanterías, armarios, cajas-palés).

Su fácil colocación y movilidad, convierte a este sobre magnético en un elemento imprescindible en cualquier almacén, fábrica o área comercial.


Tamaño Din-A4.

CARTULINA IMPREGNADA DE ACERO

Este tipo de cartulina junto con la cinta magnética constituyen la base perfecta para el desarrollo de sistemas educativos: sistemas de tableros, juegos, publicidad, etc.

Esta cartulina se puede imprimir fácilmente, tanto con fotolitos como con estampación. El acabado es blanco en ambas caras.

Anchura	Espesor	Long. de rollo
800mm	0.22mm	1100mm

IMANES DE OFICINA

IMANES REDONDOS DE NEODIMIO

Medidas estándar (mm)

Colores: azul, amarillo, verde, naranja, rojo, negro, violeta y blanco.

Código	ØΑ	С	Peso Gr.	Fza. Kg.	Fza. N.	Pack
500.101	10	9	a Maa M	0.4	4	10 ud.
500.102	18	8	и иза ил	1.0	10	10 ud.
500.103	25	8	5	1.4	14	10 ud.
500.104	30	7.5	8	2.7	27	10 ud.
500.105	36	8.5	9 /	3.5	35	5 ud.
500.106	40	7.8	10.2	3.5	35	5 ud.

IMANES RECTANGULARES DE NEODIMIO

Medidas estándar (mm)

Colores: azul, amarillo, verde, naranja, rojo, negro, violeta y blanco.

Código	A	В	С	Peso Gr.	Fza. Kg.	Fza. N.	Pack
400.103	55	22.5	6.5	25	4.8	48	5 ud.

FICHAS MAGNÉTICAS

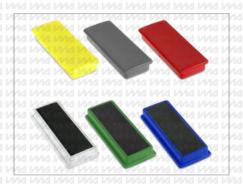
ia lituri pesa pesa jes sa podri pesa pesa pes sa pesa lessa pesa pes	Código	D mm	A mm	Peso Gr.	Fuerza Kg.	Descripción
* 03	IPLV01092	12	16	I MA IM IMA IM IMA IM IMA IM	3.5	Metal, niquelado
6	PLAS17ND	17	22.5	6.5	3.5	Plástico
0 1	PLAS17NDK	17	22.5	6.5	3.5	Plástico, color: plata
	PLAS17NDK1	17	22.5	100 100 100 100 100 100	3.5 ⁷ / ₄ 3.5 ⁷ / ₄ 3.5 3.5 3.5 3.5 3.5 3.5 3.5 3.5	Plástico, gancho-ojo
	PLAS17NDK0	via ima im via ima im via in i7 , im via ima im via ima im	22.5	I MAG IAA I MAG IAA I MAG IAA I MAG IAA	2 1242 1242 1242 1242 1242 1242 1242 12	Plástico, gancho-ojo, plata

IMANES DE OFICINA

IMANES REDONDOS DE FERRITA

Son adecuados para la planificación y organización en talleres u oficinas. Gracias a su fácil colocación y su bajo coste son aplicables para señalizar plannings, gráficos y para la sujeción de notas sobre tableros metálicos.

Si precisan de algún formato, color o tamaño especial, no incluido en nuestro programa estándar, no dude en consultar con nuestro Departamento Comercial, que le ofrecerá la solución más adecuada. También, se pueden imprimir individualmente (máx. 4 colores) para cantidades superiores a 1000 unidades.



Medidas estándar (mm)

Colores: azul, amarillo, verde, naranja, rojo, negro, violeta y blanco.

Código	ØΑ	С	Peso Gr.	Fza Kg	Fza. N.	Pack
200.101	10.5	6.5	1.5	0.15	1.5	20 ud.
200.202	20	7.5	5	0.4	4	10 ud.
200.203	25	W8 W	1 M9 M	0.65	6.5	10 ud.
200.204	30	7.8	14	1.0	10	10 ud.
200.205	36	8.5	21/1/21	1.2	M/412/44	5 ud.

IMANES RECTANGULARES DE FERRITA

Medidas estándar (mm)

Colores: azul, amarillo, verde, naranja, rojo, negro, violeta y blanco.

Código	A	В	С	Peso Gr.	Fza. Kg.	Fza. N.	Pack
300.101	21	12	6.5	инъин	0.15	1.54	10 ud.
300.102	37	22	7.5	13	1.1	11	10 ud.
300.103	55	22.5	9	27	1.5	15	10 ud.

FILTROS MAGNÉTICOS

Marie Marie M	Medidas Ø mm					
M 150 4 M	240 a M	1 WM 3501 WM				
160	250	360				
170	260	400				
180	280	1 ma 500 ma				
200	290	600				
220	300	750 144				

Estos filtros magnéticos para tolva son apropiados para la separación de pequeñas partículas de hierro dentro de la cadena de producción. Están especialmente adaptados para las industrias de plástico y alimentación.

Su revestimiento es de acero inoxidable pulido (AISI 304 o AISI 316) lo que permite asegurar un alto grado de resistencia a la corrosión y el desgaste.

La cuidadosa selección de las dimensiones del sistema asegura una mínima resistencia al flujo del material. Este tipo de filtros magnéticos no consumen energía, no necesitan equipos auxiliares y el mantenimiento se limita únicamente a la retirada de los desechos atraídos.

El material utilizado para este tipo de filtros es el neodimio de calidad N35, ya que este tipo de imán es aproximadamente 5 veces superior al material convencional. La temperatura de trabajo es de 80°C, aunque bajo pedido se puede fabricar para soportar temperaturas de hasta 150°C.

PARRILLAS MAGNÉTICAS

Cuadradas mm	Rectangulares mm
170x170	200x350
200x200	250x400
225x225	7/4 // 300x400 //4 //
250x250	300x450
300x300	350x500
350x350	400x500
400x400	500x600

Este tipo de parrillas se utilizan para la depuración de cualquier partícula contenida en productos polvorientos o granulados, ya sea en vía seca o húmeda. Por ello, están especialmente diseñadas y adaptadas para la industria alimentaria, cerámica, etc.

La ubicación de este tipo de parrillas puede ser muy diversa:

Normalmente, se utilizan en la entrada de las tolvas, tuberías, o canales y su función es separar el metal férreo que circula a través de estos conductos.

Para asegurar un alto grado de resistencia a la corrosión y al desgaste, están fabricadas en acero inoxidable pulido.

La temperatura de trabajo es de 80ºC y bajo pedido se pueden realizar para soportar temperaturas superiores.

No necesita ninguna fuente de energía externa y son de fácil limpieza.

Nuestra gama estándar comprende una gran variedad de medidas adecuadas a cada necesidad. Las parrillas magnéticas pueden fabricarse en cualquier dimensión y los diámetros de las barras se pueden fabricar en Ø25, Ø33 y Ø 43mm. La separación de las barras filtradoras depende del producto que se manipule, ya que en función de las partículas y el material detectar la separación deberá ser mayor o menor.

PARRILLAS Y FILTROS MAGNÉTICOS SEMI AUTO-LIMPIABLES

Este tipo de parrillas y filtros magnéticos se utilizan en cualquier proceso productivo donde la contaminación por partículas metálicas es abundante o sencillamente es necesaria una limpieza continuada. Este sistema se puede instalar en cualquier proceso como, por ejemplo: molinos, tituladoras, escribas ir otras maquinarias de reciclaje o tratamiento.

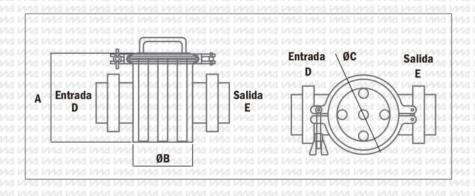
Gracias al correcto estudio y posicionamiento de sus barras magnéticas, la limpieza es sumamente sencilla. Solo hay que desenfilar la parrilla o filtro del cajón y limpiarlo con un paño o con aire comprimido.

Para asegurar un alto grado de resistencia a la corrosión y al desgaste este tipo de sistemas se fabrican en acero inoxidable. La temperatura de trabajo es de 80°C y bajo pedido se pueden fabricar para soportar temperaturas superiores. Se trata de un producto que no requiere de una fuente de energía externa para funcionar.

La separación de las barras filtradoras dependerá del producto que se manipule y del material a detectar. Si el material fuera realmente húmedo o bien con tendencia a alcanzar una gran densidad, aconsejamos realizar un estudio personalizado de nuestros sistemas magnéticos de separación para ver cuál será óptimo para la aplicación que requiere el cliente.

Cuadradas mm	Rectangulares mm
200x200x80	200x350x80
250x250x80	300x400x80
300x300x80	400x500x80
400x400x80	500x600x80

FILTROS MAGNÉTICOS PARA LIQUIDOS

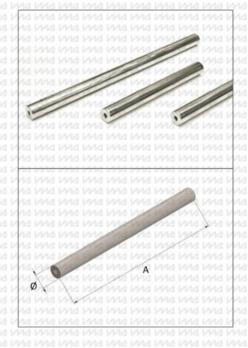


Estos filtros magnéticos se utilizan para la filtración de partículas de hierro de productos en forma líquida. Se usan también de manera muy frecuente en circuitos hidráulicos y sistemas de refrigeración. Este tipo de sistemas magnéticos están construidos en acero inoxidable (AISI 304/316) haciendo posible la utilización de este para la industria alimentaria.

Gracias a su estructura y su acabado, nos permite retirar fácilmente las barras para su limpieza. Bajo pedido se puede suministrar con retenes especiales para soportar altas presiones. En aplicaciones en las que sea necesario separar partículas de hierro de tamaño muy reducido o donde las partículas a separar estén en una materia muy viscosa. Se puede fabricar en varias calidades de imán.

Dependiendo de las necesidades se puede ampliar la fuerza magnética o se puede ampliar también la temperatura de trabajo máxima. Este tipo de filtros se pueden fabricar en cualquier dimensión y los diámetros de las barras se fabrican en Ø25 Ø 33 y Ø43. La separación de las barras filtradoras dependerá del producto manipular.

Α	В	C	Entrada D	Salida E
230	164	205	a definir	a definir


SEPARADORES MAGNÉTICOS (BARRAS)

Los separadores magnéticos están diseñados para separar pequeñas partículas de hierro, o donde las partículas a separar estén en una materia muy viscosa. Este tipo de separadores pueden incluir en cualquier punto que se desee en el proceso de flujo sólido o líquido.

Estos separadores se utilizan para retener cualquier pieza férrica (virutas, tuercas, clavos, clips, etc.). El sistema de construcción de este tipo de imán ofrece un alto grado de resistencia a la corrosión y al desgaste.

Este tipo de separadores están fabricados en acero inoxidable (AISI 304 o AISI 316). Soportan una temperatura de trabajo de 80°C, pero bajo pedidos se pueden fabricar para soportar temperaturas de hasta 180°C. Este sistema de filtración no consume energía y es de fácil limpieza.

Disponemos de diámetros estándar Ø25, Ø33 y Ø43, aunque dependiendo de la ubicación de estos, se pueden fabricar en el diámetro que precisa el cliente. Asimismo, la longitud de este tipo de cilindros se realiza en función de sus necesidades, con los extremos roscados a métrica 8 o 12, pero también se pueden suministrar con extremos ciegos o métricas diferentes.

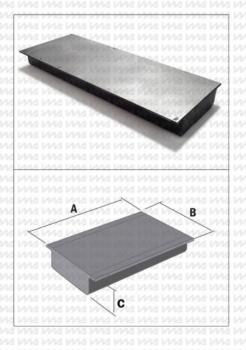
(Ø) Medidas 25				
Ø mm	A mm			
25	100			
25	150			
25	200			
25	250			
25	300			
25	350			
25 //4	400			
25	450			
25	500			
25	600			
25	700			
25110	800			
25	900			
25	1000			

(Ø) Med	(Ø) Medidas 33				
Ø mm	A mm				
33	100				
a 1433 144	150				
33	200				
33	250				
a 1433 M	300				
33	350				
4 1/33 1/4	400				
33	450				
a 1/33 1/1	500				
33	600				
33	700				
a 1433 144	800				
33	900				
4 M 33 M	1000				

(Ø) Medidas 43				
Ø mm	A mm			
43	100			
MA 43 A	150			
43	200			
43	250			
43	300			
43	350			
43 4	400			
43	450			
43	500			
43	600			
43	700			
M4 43 4 V	800			
43	900			
43	1000			

Propiedades:

- * Máximo poder de atracción magnética
- * Fuente de energía excepcional e inagotable.
- * Fácil limpieza.
- * No necesita mantenimiento.
- * Eliminación de partículas metálicas.


PLACAS MAGNÉTICAS

Nuestras placas magnéticas están diseñadas para extraer el hierro de aquellos materiales menos contaminados, para la depuración de productos (en especial de alimentación), para la protección de molinos, hileras y todo tipo de maquinaria en general. Estas placas no consumen energía y no necesitan equipos auxiliares.

Su mantenimiento se limita a la debida limpieza de rutina: extracción de los desechos atraídos. Están realizadas con un perfil de acero para asegurar una construcción robusta y unas posibilidades de montaje flexibles, además los imanes están totalmente protegidos dentro de una caja de acero inoxidable. La superficie en contacto con el material que circula es resistente al desgaste.

Imán calidad ferrita: se utiliza para la atracción de partículas de tamaño importante como pueden ser tornillos arandelas alambres etc.

Imán calidad neodimio: gracias a su poder de imantación este tipo de placas magnéticas puede detectar una gran variedad de partículas por pequeñas que sean. Se utilizan en materias muy viscosas o donde la distancia de detección es muy elevada.

Cóc	ligo	A	В	C	Doco Ka
Neodimio	Ferrita		•	· ·	Peso Kg.
PNDN01200	PFEF01105	100	195	14 50 M	la 1/1/a 2.8 a 1
PNDN01292	N BANI BANI BI N BANI BANI BI	125	195	50	3.5
PNDN01280	PFEF01127	150	195	14 ISO4 IA	14 MA 4.24 L
PNDN01118	PFEF01138	200	195	50	5.6
PNDN01142	PFEF01149	250	195	50	14 MA 1 7 14 1
PNDN01133	PFEF01160	300	195	50	8.4
PNDN01086	N DIVIN DIVIN DI	350	195	50	9.8
PNDN01141	PFEF01179	400	195	04 ISO4 IA	14 1/1/21 1
PNDN01146	PFEF01188	450	195	50	12.6
PNDN01139	PFEF01192	500	195	50	14
PNDN01078	PFEF01196	550	195	50	15.4
PNDN01143	PFEF01197	600	195	50	16.8
PNDN01051	PFEF01202	650	195	50	18.2
PNDN01064	PFEF01204	700	195	50	19.6
PNDN01157	PFEF01205	750	195	50	14 1444 2114 1
PNDN01169	PFEF01207	800	195	50	22.4
PNDN01087	N DINI DINI DI	850	195	50	23.8
има има им	PFEF01209	900	195	50	25.2
PNDN01285	PFEF01211	1000	195	50	28

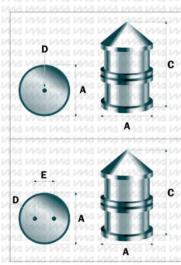
TORPEDOS MAGNÉTICOS (Ferrita/Neodimio)

Estos tubos magnéticos son ideales para la extracción de partículas metálicas como virutas, tuercas, clavos y grapas. Generalmente, los imanes se instalan en la entrada de la materia prima, así como en primeras etapas del proceso de producción.

Está diseñado para evitar que las partículas de hierro puedan afectar al funcionamiento de la maquinaria de elevado coste, tales como mezcladoras, trituradoras y transportadoras de tornillo. Los tubos magnéticos de alta intensidad se suministran con una carcasa de acero inoxidable y su diseño permite que el material a tratar no se vea afectado por las partículas metálicas.

Los tubos fabricados con material magnético de ferrita o neodimio generan profundos campos de flujo magnético penetrantes, garantizando la separación de la contaminación de hierro, mientras la cápsula contribuye a mantener la integridad del producto y el flujo durante un procesamiento del producto de alta velocidad. Toda la contaminación atrapada está separada del flujo circulante en una zona de captación protegida de desgaste.

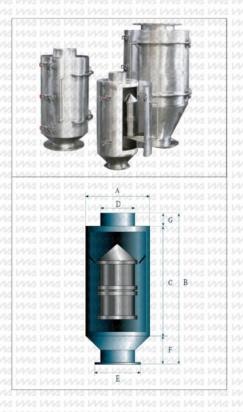
Especificaciones Técnicas:


- Material magnético: Imán Neodimio/Ferrita
- Especificación de material: Acero Inoxidable (AISI 304 o AISI 316)
- Concentradores de polo pulidos y acero dulce.
- Acabado: Pulido
- Limitaciones: Según calidad del material.
- Temperatura máxima de trabajo: Neodimio (80ºC) y Ferrita (200ºC)

Medidas Estándar (mm)*

Cód	igo	40	ALL AS	LAG	
Neodimio Ferrita		ØA		D	
TRPT01010	a p <u>pia ppia p</u> a p <u>pia ppia p</u>	125	325	M14	
Ma Ma M	а ималима и	200	340	M20	
MA PMA MA	a lang-ana k	300	450	M20	

Có	digo	44				
Neodimio	Ferrita	ØA	C	D	-	
inna inna in Inna Taga in	IMA T125/325	125	325	M8	50	
MA T200/400		200	330	M8	60	
inna inna in Inna Tina in	IMA T300/425	300	400	M10	100	



TUBOS MAGNÉTICOS CON CARCASA INOXIDABLE (Ferrita/Neodimio)

Para facilitar la limpieza de la contaminación recogida, se debe detener temporalmente el flujo del producto, o temporalmente desviarlo del imán. Al abrir la trampilla, se aparta la puerta montada del tubo de la carcasa, permitiendo la limpieza y evitando cualquier peligro potencial de poderse volver a introducir contaminación en el proceso de producción. En tubos mayores, se introducen puertas deslizantes para facilitar el proceso de limpieza.

Características principales y ventajas:

- Campos de flujo de alta densidad son emitidos desde los concentradores generando en exceso Gauss 5000/9000.
- Bridas de entrada y salida según especificaciones / indicar en su pedido.
- Puerta oscilante de bisagra de doble efecto para mejor acceso.
- Proporciona una gran protección frente a una amplia variedad de productos contaminantes.
- Sin mantenimiento (solo limpieza), sin suministro de energía, ni costes adicionales.
- Rápido y fácil de instalar. Una vez colocado, está asegurado su funcionamiento.

Código	ØA	В	С	ØD	ØE	F	G
IMA TM125/285	285	715	540	114	114	115	60
IMA TM200/400	400	825	650	200	200	115	60
IMA TM300/600	600	1090	650	300	300	380	60

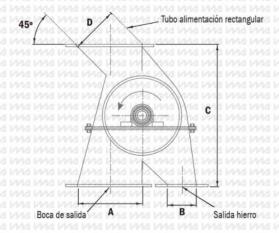
TUBOS MAGNÉTICOS CON SEPARADOR EXTERIOR

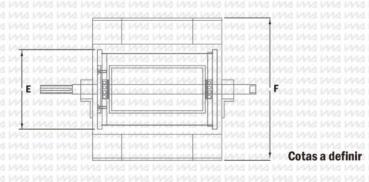
Los tubos magnéticos con núcleo exterior IMA, están especialmente indicados para la separación de partículas férricas de materias primas en polvo, debido a que se trata de un sistema que asegura una mínima resistencia al flujo de material.

Este tipo de tubos magnéticos, también son muy adecuados para la extracción de partículas férricas de corrientes de material en las que encontramos partículas de mayor dimensión, por ejemplo, partículas de madera o plástico.

La limpieza de estos sistemas es muy sencilla. Los tubos magnéticos con Núcleo exterior IMA, están fabricados con placas magnéticas de calidad neodimio. La carcasa es de acero inoxidable (AISI 304 o AISI 316 según solicitud), haciendo posible su utilización para la industria alimentaria. La temperatura de trabajo es de 80ºC, aunque bajo pedido se pueden fabricar para soportar temperaturas superiores.

TAMBOR MAGNÉTICO CON ARMARIO DIFUSOR


El armario difusor convierte al tambor magnético en un producto ideal para caídas por gravedad desde tuberías o ambientes en donde el polvo es un problema.

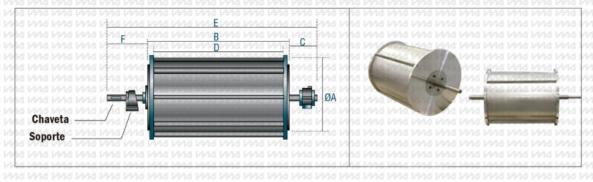

La fisionomía de la estructura hace que el 100% del producto incida directamente sobre el imán, consiguiendo unos resultados inmejorables.

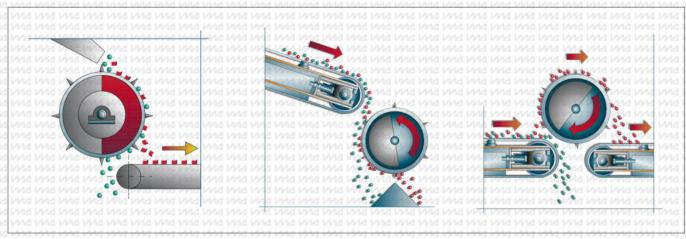
Las dos salidas diferenciadas de producto y material férrico evitan cualquier fuga o mezcla y acaban por dotar al imán de un completo y automático sistema de separación magnética.

Consulte con nuestro departamento comercial para definir las dimensiones.

TAMBORES MAGNÉTICOS

Estos tambores magnéticos se utilizan para la protección de máquinas, trituradoras y molinos. Los tambores fabricados por ingeniería magnética aplicada son perfectos para la separación de piezas de hierro en gran variedad de procesos.

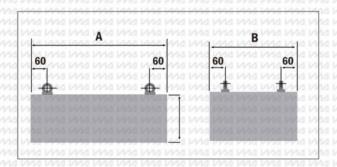

Ese sistema está compuesto por dos secciones, una magnética y otra no magnética. Este sistema permite descargar el material que circula por encima del sector magnético. Las partículas férreas permanecen en el tambor, cayendo luego al abandonar el sector magnético. Estos tambores están fabricados en acero inoxidable compuesto por dos ejes, uno móvil y otro fijo.

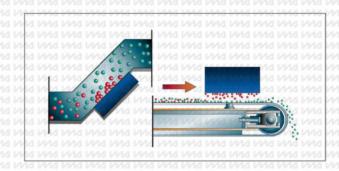

El eje móvil gira con el tambor, mientras que el eje fijo se usa para posicionar el campo magnético. Estos tambores pueden trabajar en ambientes húmedos y polvorientos e incluso a temperaturas elevadas de hasta 150°C. Si se superará esta temperatura daría origen a una pérdida de propiedades magnéticas derivadas de un calentamiento. Este fenómeno en cualquier caso sería temporal, ya que al enfriarse el tambor recuperaría de nuevo sus propiedades iniciales. Estos tambores se fabrican con imanes cerámicos de ferrita o neodimio.

Medidas Estándar (mm)*

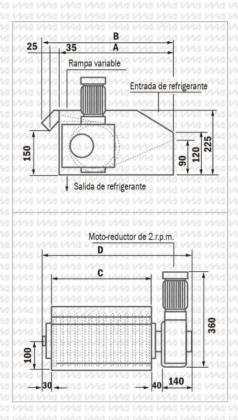
Cód	ligo	d'A
Neodimio	ØA	
TAMN03000	Ma Ma Ma	300
TUBN00003	TUBF00004	400

Resto de cotas a definir

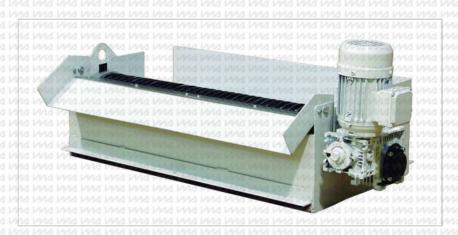

PLACA ESPECIAL P.E.F


Este tipo de palancas magnéticas se utilizan para la extracción de partículas metálicas que circulan sobre una cinta transportadora durante la caída en vertical o sobre canales inclinados, bajo rampas etc.

Está fabricada con imanes de ferrita de grandes dimensiones posicionados de tal forma que generan un fuerte y profundo campo magnético. La superficie del imán que entra en contacto con el material que circula, está fabricada en acero inoxidable.


Para el montaje, estas placas magnéticas disponen de agujeros roscados en su parte posterior. La gama estándar incluye una gran variedad de medidas, No obstante, bajo pedido especial, podemos suministrarlas en cualquier dimensión

Cóc	digo	Α	В	•	x	Peso Kg.	
Neodimio	Ferrita	pag 🏝 LL	MA ENTER	MAD DESIGN		reso kg.	
PNDN01269	PFEF01005	320	320	via 701a i	M10 I	na m 45 ma	
PNDN01056	na nna nna i na nnā ima i	420	320	70	M10	59	
та има има и	PFEF01012	520	320	MA 7014 L	M10	10 M 70 M	
PNDN01375	na ima ima i na ima ima i	520	320	100	M10	100	
PNDN01390	na Ima Ima I	420	400	160	M12	144	
и има има и	PFEF01173	520	400	160	M12	na ma 160 ma	
PNDN01392	PFEF01174	620	400	160	M12	215	
na inna inna in	PFEF01176	520	420	200	M12	260	
PNDN01395	PFEF01147	620	520	200	M16	380	
ia ima ima m	PFEF01043	820	520	200	M20	510	
PNDN01399	na ima ima i	820	950	200	M20	627	
PNDN01403	PFEF01325	820	750	270	M20	780	


SEPARADOR MAGNÉTICO ROTATIVO

Este separador se emplea para eliminar de los líquidos refrigerantes todo tipo de partículas férricas contenidas en los mismos. Consiste básicamente en un rodillo que, accionado por un reductor, gira dentro de una carcasa de acero a 2 r.p.m.

El líquido que entra por la parte superior, circula entre el rodillo y el fondo de la carcasa y en esta zona las partículas quedan fijadas sobre los discos de acero, que al seguir girando, llegan a un peine-rasqueta de acero inoxidable, donde finalmente son separadas.

Las partículas caen a un cajón de recogida y el líquido, limpio y filtrado, cae por la parte inferior del aparato.

Código	Α	В	С	D	E	Potencia KW 220V-50Hz	Caudal I/min
ISMR-60	400	460	260	470	320	0.09	60
ISMR-100	400	460	380	590	440	0.09	100
ISMR-300	400	460	860	1070	930	ma n 0.09 na m	300
ISMR-500	400	460	1350	1550	1410	0.09	500

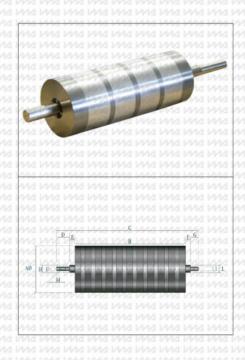
IMÁN TELESCÓPICO

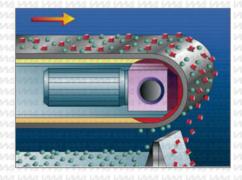
El imán telescópico es extensible hasta 65 mm. Su diseño en forma de bolígrafo y su fuerte magnetismo hacen que sea una herramienta de gran utilidad y fácil manejo. Son utilizadas en los talleres de reparación de vehículos. En el espacio del motor se pueden utilizar para recoger piezas, gracias a dimensiones reducidas son una herramienta ideal para recoger piezas metálicas de difícil acceso manualmente.

PRECAUCIÓN:

No se debe insertar la barra magnética cuando el motor esté en funcionamiento. El imán no previene de choques eléctricos. Mantener fuera del alcance los niños.

Este tipo de rodillos magnéticos sustituye al rodillo que se encuentra al final de la cinta transportadora. Este sistema extrae las partículas de hierro del material que circula y las conduce hasta la parte inferior donde se desprenden y se recogen. Estos rodillos magnéticos para cintas transportadoras están fabricados con imán de ferrita, pero si se pretende conseguir un mayor poder atracción se pueden fabricar también con imán de neodimio.


Para su buen funcionamiento, tienen que estar fijados a una estructura rígida y segura, estableciendo previamente su posición.

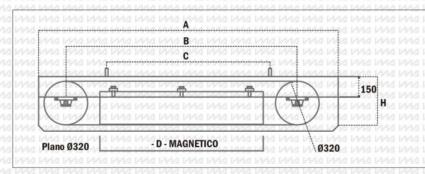

En el supuesto caso que la transmisión del movimiento se realizará mediante una cadena, los rodillos deberán estar protegidos adecuadamente por un mecanismo fijado en la estructura de la máquina. La temperatura aconsejable de trabajo está entre los 0ºC y los 40ºC con una humedad relativa del 80% como máximo. Para las operaciones de trabajo con materiales que tienen una alta temperatura es preciso dejarlos enfriar previamente. Para poder obtener una perfecta operatividad, es muy importante que la trayectoria del material que debe ser seleccionado sea continua y que esté correctamente distribuido a lo largo de la cinta transportadora.

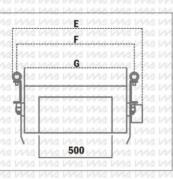
La tabla adjunta proporciona las medidas de nuestro programa estándar. Asimismo, bajo pedido especial podemos realizarlos en dimensiones y/o especificaciones especiales en función de sus necesidades particulares. Este tipo de rodillos están libres de mantenimiento y no precisan suministro de energía.

Resto de cotas a definir

RODILLOS MAGNÉTICOS

Cód	Código		MARKET LOCAL NA	Cinto	Capacidad	Peso
Neodimio	Ferrita	ØA	В	Cinta	mc/h	Kg
RODN0003	ia izna izna in	150	500	450	2.5	35
RODN0006	na ivvia ivvia iv	200	400	400 400	ma ima 16na ime	65
RODN0009	RODF0025	320	450	450	18	160


OVERBAND MODELO OV


El overband serie OV se coloca suspendido encima de la cinta que transporta el material y su funcionamiento puede ser transversal o paralelo según las condiciones de la instalación.

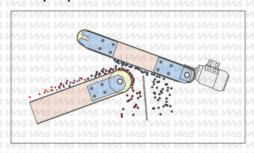
Este tipo de overband se utiliza en los sectores de canteras, reciclaje y en cualquier planta de extracción de áridos.

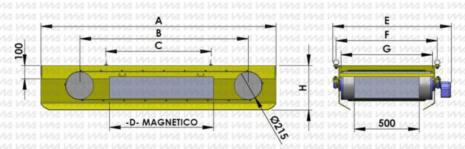
En el apartado de las medidas se detallan las medidas básicas y el resto de cotas a definir en función de las necesidades de nuestros clientes.

Cotas a definir

OVERBANDS

Overband modelo OV-E

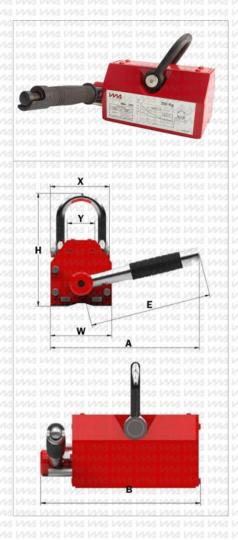



Este sistema de separación está fabricado con imanes protegidos por una cinta estructura que se encarga de eliminar las piezas captadas por el dispositivo magnético, manteniéndolo limpio y en las mejores condiciones de trabajo en todo momento.

Los overbands están diseñados para trabajar sobre la cinta de posición transversal o longitudinal, según las condiciones de instalación y el tipo de trabajo a realizar.

Se recurre al uso de estos sistemas cuando la cantidad de partículas metálicas es considerable. Cabe añadir también que los overbands están provistos de una cinta extractora accionada por un motor reductor de potencia adecuada.

Principio operativo del Overband


Medidas Estándar (mm)*

MOTOR: Mototambor - motor interior transmisión por engranaje, 1.5 KW A 2.4 KW-1.5 A 2.4 M/SEG

OBSERVACIONES: Estructura realizada en hierro con forma de U lateral, Color-Amarillo. 4 cáncamos M 16 para suspensión, Banda de goma negra GB 400 con tacos de 40 mm

Cóc	Código		and point				-		
Neodimio	Ferrita	Α	В	C	D	-		G	н
A consultar*	OVEO01025	a pna s a pra l	1000	ING W	а има и а ийа и	па ипа иа Биа	ина ин ИН <u>а</u> ИН	a waa w a waa w	אם איז או מא
A consultar*	OVEO01007	1800	1300	800	800	900	770	700	300
A consultar*	OVEO01019	2000	1500	1000	1000	900	770	700	300
A consultar*	OVEO01020	2200	1700	1200	1200	900	770	700	300
OVE01033	A consultar*	id iv e ta i	иа∌ии	MH IN	a kela k	иа жиа	MA# MA	а маа и	10 18/

ELEVADORES MAGNÉTICOS

Los elevadores magnéticos, están fabricados con Imán de Neodimio de gran poder de atracción. Son completamente autónomos y no necesitan estar conectados a ninguna fuente de energía eléctrica. Para activarlos, basta girar la palanca hacia el lado derecho unos 100 grados aproximadamente e introducirla en el pestillo de seguridad, que lo mantiene bloqueado durante el periodo de trabajo.

El práctico y eficaz diseño del elevador, permite manejar todo tipo de piezas, tanto de superficie plana como redonda.

Poseen una palanca de bloqueo de seguridad para impedir el desimantado accidental. Estos Elevadores Magnéticos, son capaces de resolver satisfactoriamente las necesidades de manejo de materiales férricos con un coste excepcionalmente bajo, sin gasto alguno de instalación y libre de todo mantenimiento. Además, gracias a su bajo peso, puede ser incorporado en cualquier tipo de grúa.

- POTENTES: Gran capacidad, incluso con entrehierros grandes.
- SEGUROS: Coeficiente de seguridad de 3 y palanca con bloqueo de seguridad.
- LIGEROS: Fuerza de desprendimiento de 80 a 115 veces su peso.
- CÓMODOS DE USAR: Se imantan y desimantan con una mano.
- FÁCILES DE MANTENER: Posibilidad de rectificar regularmente los polos magnéticos de contacto.

Medidas Estándar (mm)*

Cádina	-	a long long	in a part in	144	a letter land		and the same	Dana Ka	Carga m	náxima (Kg)
Código	A	В	н	W	CONTRACTOR OF THE PARTY OF THE		Y	Peso Kg.	Piezas planas	Piezas Tubulares
ELVE01010	166	127	120	64	142	64	29	n ma 3 na n	100	ma m30 na ma
ELVE01011	217	206	171	88	176	AA 83 A	39.5	10	250	ma m 75 ma ma
ELVE01012	268	265	226	118	219	108	51.5	20	500	150
ELVE01013	334	317	248	148	266	120	64	37 /4 V	1000	vva v 300 na v na
ELVE01014	458	451	298	172	380	154	87.5	80	2000	600
ELVE01016	621	509	401	226	512	195	111.5	160	3000	ma 1/900 ma ma

Fuerza máxima conseguida en condiciones óptimas, sobre una placa de hierro ST-37 de un espesor de 30mm y la superficie rectificada.

Factores influyentes

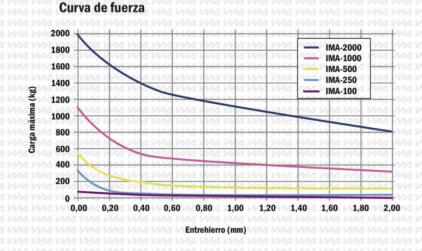
Factores que influyen en la fuerza de atracción de un elevador magnético. Básicamente, deben tenerse presentes 4 factores:

LA SUPERFICIE DE CONTACTO

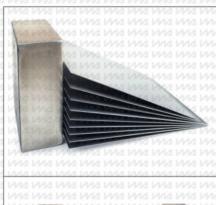
Si existe una separación entre el elevador y la carga, el flujo magnético se ve dificultado, con lo que se reduce la fuerza de atracción. Tales elementos causantes de la separación, ya sean óxido, pintura, aceites o una superficie de acabado rugosa, generan un entrehierro y en consecuencia una disminución de dicha fuerza.

EL ESPESOR

El flujo magnético del elevador necesita un espesor mínimo para poder actuar. Cuando el material a transportar no tiene ese espesor mínimo, la fuerza de atracción se reduce considerablemente.


LONGITUD Y ANCHURA

Cuando se aumenta la longitud o la anchura del material a manipular, los extremos se curvan y cede la planitud, provocando un entrehierro entre el elevador y la carga. Esto sucede más a menudo con espesores delgados. Cuando esto ocurre, una de las posibles soluciones es la sujeción en dos puntos o más.


EL MATERIAL


Los aceros con bajo contenido de carbono son buenos conductores del magnetismo, sin embargo, los aceros con alto porcentaje de carbono o aleados con otro material, pierden las propiedades magnéticas, reduciendo considerablemente la fuerza del elevador. Los aceros más duros, se comportan peor magnéticamente y tienen tendencia a conservar un magnetismo remanente.

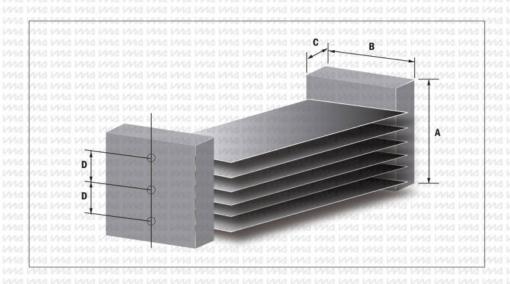
Material de la carga	Peso Kg
Acero no aleado 0.1-0.3%C	100%
Acero no aleado 0.4-0.5%C	90%
Acero aleado F-522	80-90%
Fundición gris va vna vna v	50-60%
Acero F-522 templado a 55-60 HRc	40-50%
Acero inoxidable austenítico	0%
Latón; Aluminio; Cobre	0%

SEPARADORES MAGNÉTICOS

Los Separadores Magnéticos IMA, se utilizan para elevar chapas de acero de una pila y mantenerlas en suspensión. La distribución del campo magnético que tienen estos separadores consigue que las chapas apiladas no se toquen, manteniéndolas separadas una por una.

En dependencia del apilado que se precise, se usarán separadores de distinta medida y distinta calidad de imán. Estos separadores Magnéticos pueden fabricarse en dos versiones: Neodimio o Ferrita.

La elección del tamaño adecuado de separador varía en función de los siguientes parámetros:


- Espesor.
- Medidas de la chapa.
- Altura de la pila.
- La calidad superficial de la chapa.
- Las condiciones de la chapa (humedad, aceite ...)

Superficie máxima a separar por separador:

- En chapas normales hasta 0,3 m2.
- En chapas con aceite hasta 0,15 m2

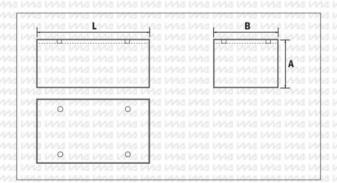
Si se quiere retirar las chapas con un proceso automático, se necesitará adaptar un sistema mecánico de expulsión.

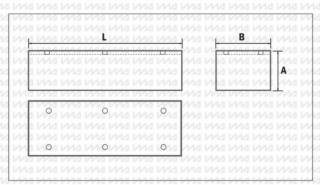
Espesor de las chapas a separar	В	С	Α
Hasta 0.7mm	75	30	La altura de la
Hasta 1mm	105	30	pila y la del
Hasta 2mm	105	50	separador deben estar en
Hasta 4mm	180	90	una relación de
Masta 6mm	280	95	1/5 a 1/10

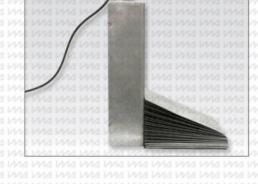
Tabla de Medidas de Separadores Magnéticos de Ferrita/Neodimio

Código		VELOVE HAVE	View Hall	the late has	CHARLESTON CO.	Agujeros de	Peso Kg.	
Ferrita	Neodimio	A mm	B mm	m Cmm Dmm		Fijación	Orientativo	
SEPF0024	SEPN0001	75	75	30	50	2 de M-8	a ima ina im	
SEPF0025	SEPN0002	275	75 141	Ma 1301 MA	200	2 de M-8	a ma 3.7a m	
SEPF0026	na inna inna ii na inna inna ii	340	75	30	250	2 de M-8	4.5	
SEPF0027	SEPN0004	105	103	30	50 /4	2 de M-8	a waa 1.9a wa	
MAG MAG M	SEPN0005	210	103	30	100	2 de M-8	3.8	
ma ma n	SEPN0006	310	103	30	200	2 de M-8	5.70 M	
SEPF0031	SEPN0008	145	103	50	100	2 de M-8	a vna 3.8 a vn	
SEPF01040	na ima ima i na ima ima u	210	103	50	100	2 de M-8	5.6	
SEPF0033	SEPN0010	280	103	Ma 50 Ma	200	2 de M-8	a vna 7.4a vn	
SEPF0034	SEPN0011	310	103	50	200	2 de M-8	8.2	
nna inna n	SEPN01088	345	103	50	250	2 de M-8	9.2	
SEPF01041	на има - има и	410	103	50	150	3 de M-8	10.9	
SEPF01080	na ima ima i	445	103	50	150	3 de M-8	11.8	
SEPF0038	SEPN0015	na 1510 ma	103	na 1501 m	200	3 de M-8	13.6	
inna inna in Inna tina in	SEPN01024	610	103	50	150	4 de M-8	16.2	
имацима и	на инајина и	765	103	50	200	4 de M-8	20.3	
ina ma r	SEPN0018	280	103	90	200	2 de M-12	23.5	
SEPF0042	SEPN0019	400	180	90	150	3 de M-12	33.5	
SEPF0043	па ина-ина и	345	280	va 95 va	100	3 de M-12	43.5	
SEPF0044	na izna izna iz	545	280	95	150	4 de M-12	59	

SEPARADORES ELECTROMAGNÉTICOS


Los Separadores Electromagnéticos IMA, se utilizan para separar y elevar chapas de acero de una pila y mantenerlas en suspensión, facilitando el agarre manual de las chapas y evitando una doble cogida en sistemas automáticos.


Tienen la ventaja de activarse cuando lo necesitamos, mediante conexión eléctrica a 220 v. Son más seguros de manejar que los permanentes, pero tienen el inconveniente que si se corta el suministro eléctrico pierden la imanación. La elección del tamaño adecuado de separador varía en función de los siguientes parámetros:


- 1. Espesor
- 2. Medidas de la chapa
- 3. Altura de la pila
- 4. La calidad superficial de la chapa
- 5. Las condiciones de la chapa (humedad, aceite, ...)

Disponemos de dos modelos diferentes, unos para espesores de chapa inferior a 0.5 mm y otro para espesores superiores a 0.5 mm.

Para una mayor información, no dude contactar con nuestro departamento técnico.

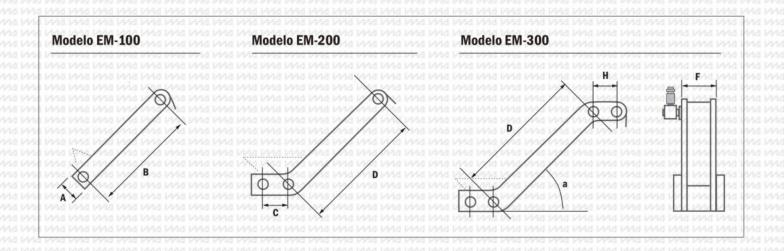
Chapas con espesor superior a 0,5mm

Código	A mm	B mm	Lmm	Agujeros de fijación
IMA 20.25.001E	105	143	100	2 de M-8
IMA 20.25.002E	105	143	200	2 de M-8
IMA 20.25.003E	105	143	300	4 de M-8
IMA 20.25.004E	105	143	400	6 de M-8

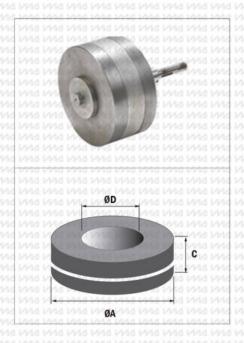
Chapas con espesor superior a 0,5mm

Código	A mm	B mm	Lmm	Agujeros de fijación
IMA 20.26.001E	130	170	100	2 de M-8
IMA 20.26.002E	130	170	260	4 de M-8
IMA 20.26.003E	130	170	400	6 de M-8

CINTA TRANSPORTADORA MAGNÉTICA



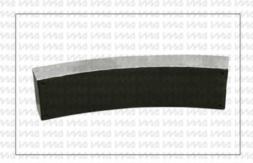
El separador de banda magnética, sirve para la separación y evacuación de partículas de gran tamaño y está diseñado para separar y transportar virutas cortas de acero y fundición en centros de mecanizado, tornos, brochadoras, talladoras, fresadoras, etc., y también para piezas de pequeño tamaño (tornillos, bulones, etc...).


Debido a que toda la transmisión se encuentra dentro del armazón, herméticamente cerrado, las averías y su mantenimiento, son mínimas. Las anchuras estándar de la banda magnética son de 200, 300, 400 y 500 mm. pudiendo variar la longitud y grados según necesidades del cliente.

Α	В	С	D	E	F	G	a
130	500 a 10000	500 a 10000	500 a 10000	500 a 10000	200 a 1000	240 a 1040	15°
130	500 a 10000	500 a 10000	500 a 10000	500 a 10000	200 a 1000	240 a 1040	30°
130	500 a 10000	500 a 10000	500 a 10000	500 a 10000	200 a 1000	240 a 1040	45°
130	500 a 10000	500 a 10000	500 a 10000	500 a 10000	200 a 1000	240 a 1040	60°
130	500 a 10000	500 a 10000	500 a 10000	500 a 10000	200 a 1000	240 a 1040	75°

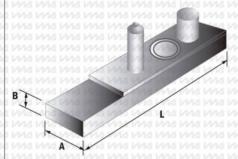
POLEAS MAGNÉTICAS

Se utilizan en cintas transportadoras. Se pueden fabricar en diferentes dimensiones, adaptándose siempre a las piezas a transportar, dependiendo del peso y las dimensiones de dicho material. Se fabrican en calidad Ferrita y Neodimio.


La gama estándar de las poleas magnéticas comprende una gran variedad de medidas, por este motivo nos pueden solicitar información.

Medidas Estándar

Código	ØΑ	C	ØD
POLP01011	90	25	30
POLP01012	90	60	30
POLP01027	90	30	55
POLP01026	90	60	55
POLP01023	170	80	30
POLP01003	180	70	40
POLP01025	215	30	103



RAÍLES - CURVAS Y PISTAS MAGNÉTICAS

Este tipo de pistas evita que las piezas transportadas puedan caerse. Su utilización también resulta efectiva en transporte aéreo.

Cotas A / B y L a definir

SISTEMA DE TRANSPORTE AUTOMÁTICO

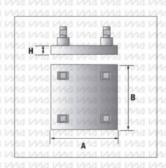
Sistema con carga

Este tipo de Cabezales magnéticos está especialmente diseñado para el transporte de cualquier pieza metálica independiente de la forma y complejidad de la misma. Se utiliza principalmente en robótica y manipulación.

Estos sistemas de transporte permiten una gran versatilidad y flexibilidad, lo que permite cumplir siempre con las necesidades de nuestros clientes, adaptándonos siempre al trabajo y al producto a transportar.

Este tipo de sistemas se aplican en una gran cantidad de industrias de producción de latas y envases, bidones, aerosoles, tapones metálicos, así como el transporte y manipulación de cualquier pieza metálica de geometrías complicadas.

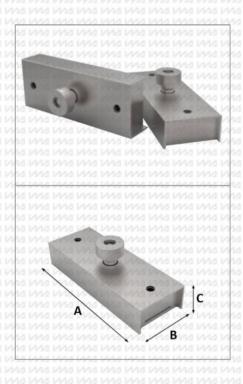
PALETIZADOR MAGNÉTICO


Este tipo de paletizadores se utilizan para el transporte de cualquier tipo de envasado provisto de tapa metálica. Se pueden fabricar en varias dimensiones, dependiendo del peso, medidas y cantidad de envases a transportar.

Los paletizadores magnéticos son especialmente adecuados para cualquier industria que en sus fabricados necesite del transporte de envases.

Se fabrican en calidad neodimio y ferrita, con una fuerza de atracción aproximadamente cinco veces superior a la de un imán convencional. Para mayor información consulten con nuestro Departamento Técnico.

Código	Calidad	A	В	Н	Peso Kg.
PALN01140	NEODIMIO	343	257	81	MAG N
PALN01130	NEODIMIO	850	1250	140	имаи
IPAL0009	FERRITA	1120	1420	100	има и
PALF01110	FERRITA	1200	800	110	129
PALN01141	NEODIMIO	1400	1200	140	MAN
IPLA00375	FERRITA	1540	170	140	MAG M



Los imanes de encofrados permiten la adaptación de múltiples aplicaciones en cualquier dispositivo de encofrado. Además, los soportes magnéticos pueden ser utilizados junto a las columnas/dispositivos de sujeción, así como también sobre cualquier superficie de encofrado. La industria del prefabricado de hormigón busca métodos para realizar piezas de forma más económica y eficaz.

La geometría particular permite la adaptación y fabricación en cualquier dimensión, cumpliendo siempre con las aplicaciones y necesidades de nuestros clientes. Utilizamos para la fabricación de este tipo de sistemas, los más estrictos sistemas de control con el fin de satisfacer las elevadas exigencias de calidad.

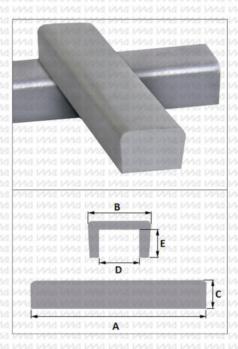
CAJAS MAGNÉTICAS

Consiste en una caja protectora del sistema de imanes, provista con un botón para la fijación rápida y con una palanca para soltarlo.

Contamos con tres modelos con diferentes fuerzas de adherencia (en Kg y N), que cubren las necesidades que van desde el sencillo encofrado hasta las sujeciones más exigentes que precisan de imanes de gran potencia.

Con este sencillo y potente sistema de fijación se puede ahorrar mucho tiempo en los procesos de soldado y esmerilado previos a la creación del armazón para la fabricación del encofrado.

Código	A	В	С	Fza. Kg.	Fza. N.
ENCC00001	180	M 60 M	40	450	4500
ENCC00002	280	60	40	900	9000
ENCC00004	320	120	60	2100	21000

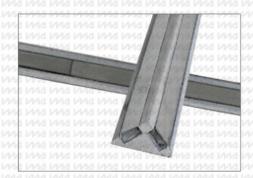

Los bloques magnéticos son un concepto más sencillo que se compone con una carcasa protectora de imanes en forma de u invertida sin tornillo se fija automáticamente a la superficie metálica.

Son de una gran utilidad en los casos de fuerzas de adherencias y usos más simples su peso más ligero y menor tamaño permiten múltiples utilidades de fijación en espacios más reducidos o complicados.

Medidas Estándar (mm) *

Código	A	В	С	D	Ε	Fza. Kg.	Fza. N.
ENCB00001	130	54	35	45	29	350	3500
ENCB00002	250	54	35	45	29	900	9000

BLOQUES MAGNÉTICOS

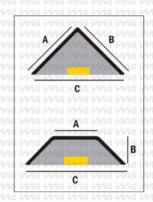

TRIÁNGULOS IMANTADOS

Perfiles magnéticos de tres caras en acero macizo.

El llamado "Berenjeno" magnético es una solución imantada que se presenta en diferentes variantes según su imantación a una o dos caras, al 50 o 100%. Longitud 3 metros.

Medidas Estándar (mm) *

Tipo	A	В	С	Longitud Imantada%
nna una una una una una	10	10	14	50 o 100%
	15	15	21	50 o 100%
m a ma ma i na ma ma ma ma ma	20	20	28	50 o 100%
	10	10	14	50 o 100%
	150 10	15	21	50 o 100%
ANA IANA IANA IANA	20	20	28	50 o 100%
nna inna inna inna nna inna inna inna	10	10	14	50 o 100%
	15	15	21	50 o 100%
	20	20	28	50 o 100%



Podemos fabricar triángulos imantados bajo pedido, según medidas y necesidades del cliente.

Bajo pedido: Berenjenos en plástico con imán.

PERFILES IMANTADOS

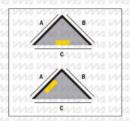
Chapa doblada con el interior relleno de resina y un imán alojado en la base. Se trata de la solución ideal para dar formas al hormigón, crear faltas juntas,

Perfil de 3 lados: Medidas Estándar

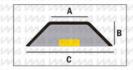
Α	В	С	Longitud Imantada%
10	10	14	50 o 100%
15	15	21	50 o 100%
20	20	28	50 o 100%

Perfil trapezoidal: Medidas Estándar

A	В	С	Longitud Imantada%
10	10	14	50 o 100%
15	15	21	50 o 100%
20	20	28	50 o 100%


PERFILES DE POLIURETANO MAGNÉTICOS

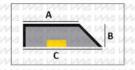
Este tipo de perfiles de poliuretano semirrígido aporta con sus cualidades un acabado final inmejorable para cualquier tipo de construcción donde los detalles son importantes.


Material:

Perfiles de poliuretano semirrígido 95 Sha estándar. Se pueden producir piezas en 75 Sha – 83 Sha y 65 Shd.

Medidas Estándar (mm)

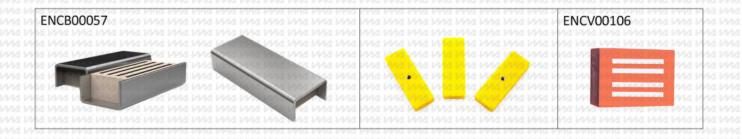
Código	A	В	Largo
ENCP00080	15	15	1250
ENCP00085	30	30	1250
ENCP00086	20	20	1250


Medidas Estándar (mm) *

Código	A	В	С	Largo
ENCP00093	40	20	50	1250
ENCP00095	20	20	30	1250
ENCP00096	30	20	40	1250

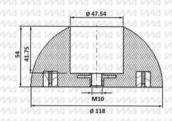
Medidas Estándar (mm) *

Código	A	c	Largo
ENCP00090	15	15	1250


Código	A	В	c	Largo
ENCP00118	30	20	40	1250
ENCP00101	22	30	30	1250

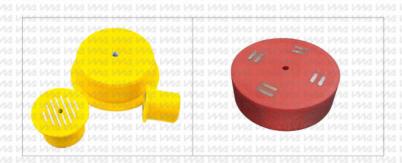
BLOQUES MAGNÉTICOS DE POLIURETANO

Medidas Estándar (mm) *


Código	Dimensiones	Poliuretano	Desmagnetización	Reglaje	Fijación	Fza. Kg.	Fza. N.
ENCV00072	160x150x80	95 Sha	Leva incluida	Llave M12	4 agujeros 6 mm	350	3500
ENCV00069	157x150x80	95 Sha	Leva incluida	Llave M12	3 agujeros 6 mm	350	3500
ENCV00044	150x110x80	95 Sha	Con un martillo o palanca se levanta por los espacios laterales	Llave M12	3 agujeros 6 mm	220	2200

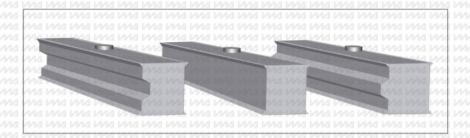
Código	Dimensiones	Poliuretano	Desmagnetización	Reglaje	Fijación	Fza. Kg.	Fza. N.
ENCV00106	100x75x50	a inna inna inna i	ma ima ima ima ima ima ima	има има им	a ivna ivna ivna ivna i	100	1000
ENCV00107	94x34x17	a ima ima ima i	na ima ima ima ima ima ima	има има им	a ima ima ima ima i	70	700
ENCB00057	140x60x30	95 Sha	Con un martillo o palanca se levanta por los espacios laterales	Manual	Manual, pero puede soldarse	145	1450

ESFERAS DE POLIURETANO



Medidas Estándar (mm) *

Código	Peso (Kg)	Poliuretano	Fijación	Fuerza (Kg)	Fuerza (N)
ENCV00119	0,640	65 Shd	4 Puntos de fijación	150	1500


BASES DE POLIURETANO

Las bases magnéticas de poliuretano ayudan a sujetar objetos en diferentes aplicaciones con las formas más adecuadas gracias a la poliamida utilizada en el proceso de inyección.

Las bases magnéticas de poliuretano están elaboradas con poliuretano, un material plástico, adecuado para crear las formas exactas para sujetar cables, tuberías u otros tipos de objetos metálicos en sector de la construcción y de los encofrados.

La temperatura de trabajo recomendada para estas bases magnéticas de poliuretano es de 60ºC.

PAREDES MAGNÉTICAS

Son paredes separadoras con sus propios imanes integrados.

Su largo puede ser de 1.000 a 5.000mm de largo.

ACCESORIOS VARIOS

SISTEMAS DE SUJECIÓN A MEDIDA

En IMA también fabricamos accesorios y adaptadores para la rápida fijación y posicionamiento de los diferentes perfiles y que se adaptan perfectamente a fijaciones de cualquier tamaño y forma incluso en aquellos casos en los que se trata de lugares de difícil acceso y todo esto con un considerable ahorro en los tiempos y costes de preparación.

PALANCAS DE EXTRACCIÓN

Placas de liberación de imanes para cajas magnéticas (todos los modelos) y para bloques magnéticos

CUADRADOS MAGNÉTICOS

Podemos realizar otros bloques según sus necesidades. Nuestro departamento técnico analizará sus necesidades para desarrollar o aconsejarle el producto que más se ajuste a su trabajo.


Altas temperaturas:

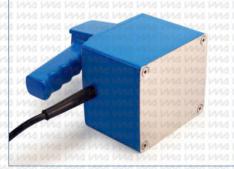
Dominamos el sector del magnetismo de tal forma que también desarrollamos imanes especiales para encofrados que soportan altas temperaturas en caso de que se utilicen hornos.

IMÁN DE BASE REDONDA

IMÁN DE SUJECIÓN PARA TUBOS

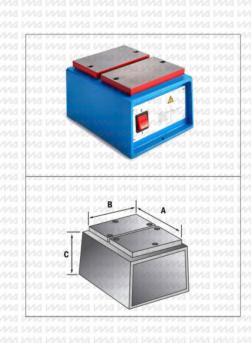
DESIMANTADORES E IMANTADORAS

DESMAGNETIZADORES

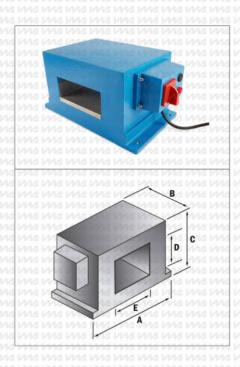

Estos Desmagnetizadores son los modelos de uso más generalizado en todo taller donde se precisa eliminar el magnetismo remanente de las piezas mecanizadas en platos magnéticos o electromagnéticos.

Instrucciones para el buen funcionamiento de estos Desmagnetizadores: Colocar la pieza a desmagnetizar sobre el aparato, conectar el desmagnetizador, arrastrar la pieza por su superficie hasta sacarla fuera de la misma unos 30 cms., después, sin acercar la pieza, desconectar el aparato. Si no queda del todo desmagnetizada, repetir la operación.

Estos aparatos son de servicio intermitente, máximo 10 minutos.



DESMAGNETIZADORES DE SOBREMESA


Estos desmagnetizadores son de servicio intermitente.

No pueden estar conectados durante más de 10 minutos. Llevan incorporado un termostato que los desconecta cuando alcanzan la temperatura máxima admisible.

Código	Α	В	C	Intensidad A	Potencia V.A.	Peso Kg.
ACCD01422	160	120	115	1.34 VV	286	5.5
ACCD01423	220	170	122	3	660	12

DESMAGNETIZADORES E IMANTADORAS

DESMAGNETIZADOR DE TÚNEL

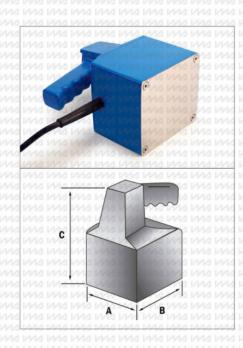
Estos desmagnetizadores son de servicio continuo, pueden estar conectados durante todo el tiempo necesario.

La pieza a desmagnetizar pasa por el interior del aparato y son especialmente adecuados para procesos automáticos en los que hay un flujo de material.

Su funcionamiento es muy sencillo. La pieza a desmagnetizar pasa por el interior del dispositivo y, por lo tanto, es especialmente apropiado para procesos automáticos en los que existe un flujo de material.

Medidas estándar (mm)

Código	A	В	С	D	E	Intensidad A	Potencia V.A.	Peso Kg.
ACCD01426	150	60	200	323	176	a 1/1 3.6 1/2 1/1	794	27
ACCD01427	200	100	200	415	240	10.5	2066	45


DESMAGNETIZADOR PORTÁTIL

Este modelo se utiliza para desmagnetizar piezas de gran tamaño que no se pueden manipular con facilidad.

Modo de empleo: se sujeta el aparato por el mango y se pasa por la superficie de la pieza a desmagnetizar.

Medidas estándar (mm)

Código	Α	В	C	Intensidad A	Potencia V.A.	Peso Kg.
ACCD01424	105	120	180	5.8	1330	5.5

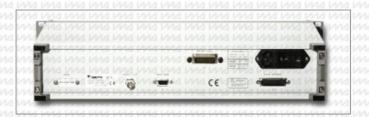
DESMAGNETIZADORES E IMANTADORAS

IMANTADORA

Este sencillo equipo está preparado para imantar cualquier tipo de imán de ferrita y de álnico. Se pueden realizar imantaciones de Sistemas Magnéticos ya montados. Satura perfectamente los motores de c/c, que existen en el mercado. Se le puede acoplar cualquier tipo de bobina acorde a sus necesidades y calibrar la descarga que se realice sobre esta. Puede acoplarse a un gaussímetro para poder hacer la lectura del campo después de la imantación. Dicho aparato es muy versátil y eficaz.

EQUIPOS DE CONTROL DE IMANTACIÓN FLUXÓMETRO

Un Fluxómetro es un equipo de control indispensable en cualquier cadena de montaje de Motores y Sistemas Magnéticos.


El fluxómetro puede conectarse a un ordenador para almacenar todas las medidas realizadas. Asimismo, puede acoplarse a un sistema de rechazo de piezas defectuosas. Su utilización es muy sencilla y eficaz.

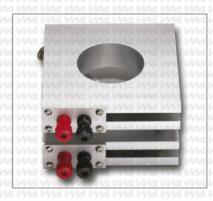
MODELO EF5

Dimensiones:484mm x 310mm x 114mm

Modelo	Display	Dígitos	Resolución	Rango	Max. V imput
Ma Ma I MEF5 // a I Ma Ma I	LCD 122x41 mm²	бхехр.2	1.00E-04 1.00E-07	No tiene Límite máximo/mínimo	60V

13	Modelo	Desviación	Conexión
NNNN	иа има им има има им има EF5 ми има има им	±0.1%	100/120/220/240V± 10% 50-60 Hz 80 W max

FLUXÓMETRO MODELO EF14



Dimensiones: 248x180x100mm

Características Técnicas

Modelo	Display	Dígitos	Resolución	Rango	Max. V imput	Desviación	Conexión
EF14	LCD 60x32 mm²	nna inna in nna i 4 na in nna inna in	1.00E-04 1.00E-07	± 225.0 mVs ± 99.99 mVs	40V	± 0.3% DC ± 5% DC	90 - 250 V 50 - 60 Hz
Ma Ma Ma Ma Ma Ma Ma Ma Ma Ma Ma Ma	I IMA IMA IMA IMA IMA IMA IMA IMA IMA	nna ima in nna ima in nna ima in nna ima in	na ima ima ima na ima ima ima na ima ima ima na ima ima ima	± 9.999 mVs ± 999.9 μVs	nna inna inna nna inna inna nna inna inn	ina ina ina ina ina ina ina ina ina ina ina ina	5 W max

BOBINA PARA FLUXÓMETROS

Las bobinas para fluxómetros son instrumentos de medición magnética rápidos y precisos. Disponemos de diferentes modelos en función de las necesidades del cliente.

Las bobinas de medición de momento, especialmente las de Helmholtz, permiten determinar el momento magnético, el momento dipolar y la polarización de componentes bipolares magnetizados de materiales magnéticos duros.

Todas las bobinas están disponibles con clavija de conexión que contiene memoria para la transferencia automática de los datos de la bobina a los fluxómetros EF5 y FF14

Modelo	Cte. Media	Resistencia	Diámetro	Límite (1% Accuracy)		
Coil Cte. Media	Resistencia	Medida	Max. Altura	Max. diámetro		
MS 75	0.0078 CM	77 Ω	65 mm	30 mm	44a 1431 mma 144a	
MS 150	0.015 CM	37 Ω	140 mm	50 mm	70 mm	
MS 210	0.014 CM	75 Ω 10 10	200 mm	70 mm	44 Mm 1444	

GAUSSÍMETRO/TESLA FH 55

El medidor de fuerza de campo magnético FH 55 es un instrumento compacto de precisión que mide densidad de flujo magnético y la fuerza de campo en Tesla (T), Gauss (G) o Amperio por metro (A/m). El instrumento se suministra con una cámara de campo cero y un manual de operación en lengua inglesa.

Muchos modelos de sondas Hall están disponibles, por ejemplo, sondas con áreas especialmente pequeñas para medir el tamaño de un punto, o sondas con un alto grado de sensibilidad o con un sensor incorporado para la corrección de dependencia de temperatura. Este último también permite mostrar la temperatura en pantalla.

Modelo	Dígitos	Unidades	PARK SAME	Rai	ngo	NE LANG SALE	Max. Resolución	Desviación	Conexión
FH 55	3¾ LCD	Tesla (T)	3 mT	30 mT	300 mT	3T	1 μΤ	± 0.3% DC	90 - 205 V
a ma mo		Gauss (G)	30 G	300 G	3 kG	30 kG	10mG	± 2% AC	50 - 60 Hz
a inna inna la inna inna	inna inna inna inna	A/m	2.4 kA/m	24 kA/m	240 kA/m	2.4 MA/m	1 A/m	a ivna ivna iv	la inna inna la inna inna

GAUSSÍMETRO/TESLA FH 51

El medidor de campo magnético es un instrumento portátil usado en mediciones electrónicas de laboratorio. Su robusta construcción asegura una gran dureza y aislamiento a efectos externos (radiaciones, temperatura, humedad, etc.)

Una característica especial de los FH 51, es la facilidad de uso y la multitud de funciones. Permiten medir la densidad del flux magnético o fuerza de campo en Tesla (T), Gauss (G) o Amperio por metro (A/m).

Aparte de la posibilidad de la medida de campos directos y alternos, el FH 51 ofrece las funciones siguientes: almacenamiento máximo de valores (máx. hold), valores ajustables de límites (limit) y un filtro para señales ruidosas. La función relativa permite la muestra en pantalla de la diferencia a un valor dado. Se puede conectar la sonda a la unidad con el cable conector apropiado o conectar directamente. El FH 51 tiene una sonda transversal. Otras sondas también están disponibles.

Tiene un teclado bien diseñado que protege el interior de la contaminación. Se dispone de todas las funciones importantes al tocar una sola tecla. La pantalla LCD grande permite una fácil lectura.

Características Técnicas

Modelo	Dígitos	Unidades		Rango	
Ma FH51	3½LCD	Tesla (T)	20 mT	200 mT	a v2T m
	MARINA NA	Gauss (G)	200 G	2 kG	20 kG
	MA MA MA	a M A/m a M	16 kA/m	160 kA/m	1600 KA/m

Modelo	Max. Resolución	Desviación	Conexión
FH51	0.01mT	± 2% DC	Baterías 4 x 1.5 V size AA
a inna inna i	ma una 0.16 una una	± 5% AC	na una una una una u
а има има г	0.01kA/m		na una una una una u

Aplicaciones:

- * Mediciones de imanes permanentes
- * Cabezales magnéticos
- * Motores de corriente continua
- * Sistemas de ignición
- * Medidas de entrehierros (altavoces)
- * Polaridad de campo

SONDA HALL PARA GAUSSÍMETRO MODELO HS-TB51

Características Técnicas

MODELO HS-TGB5104005

Modelo Sonda	Medición	Para HFH5X	Material	Longitud	Espesor	Anchura
HS-TBG5104050	Transversal	MF55	Fibra vidrio-Epoxy	55 mm	1.0 mm	<4.0 mm

Modelo Sonda	Area Activa	Rango	Cable	
HS-TB51	0.4 mm	3 MT-3T	1.5 mm	

MEDIDOR DE POLOS

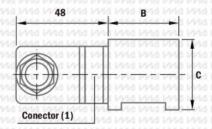
El medidor de polos es un equipo portátil de control de campo de polos magnéticos. Tiene aplicaciones en el sector mecánico como medición de bajo campo, control de piezas mecanizadas y herramientas, etc. y en el sector electrónico sus aplicaciones son múltiples, imantación de altavoces, relés, imanes permanentes, solenoides, electroimanes, motores DC, etc. Mediante una señal luminosa nos indica el sentido del campo polo N - polo S.

PERMEÁMETRO

Este equipo realiza todas las curvas de desimantación de cualquier material magnético. Dichas curvas, pueden realizarse también sometiendo las muestras a altas temperaturas. Todo el proceso está computarizado y es de alta precisión.

Es un sistema automático de control de medidas computarizado, que sirve para determinar las características magnéticas de diferentes materiales magnéticos. A través del sistema de bobinas se generan procesos de imantación y desimantación entre valores que están en el margen de saturación, obteniendo los siguientes resultados técnicos posibles:

- Medida automática de los ciclos de histéresis (representación gráfica del historial del material magnético) de los imanes.
- Medida de la homogeneidad y heterogeneidad de la muestra.
- Medida de diferentes polos de la pieza magnética.
- Determinación de la magnitud del campo magnético (B) e inducción magnética (H) en los diferentes sistemas (SI y CGS).
- Determinación de características magnéticas como el campo de remanencia, el campo coercitivo y el producto de máxima energía (max BH).

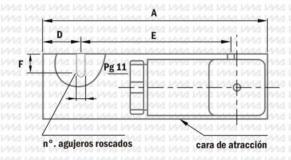

CORRIENTE CONTINUA

Un electroimán es un pequeño dispositivo electromagnético destinado para transformar la energía eléctrica en energía mecánica. Los electroimanes de corriente continua se fabrican con aleaciones férricas y funcionan a 24 V corriente continua. Su funcionamiento es muy sencillo, cuando activamos la corriente se genera un campo magnético que queda concentrado en la armadura de hierro, permitiendo así cualquier tipo de sujeción.

Están destinados a un funcionamiento intensivo sin límite de maniobras y servicio permanente. Su principal característica es su gran fuerza de retención con un consumo de corriente moderado, estos electroimanes se utilizan en robótica industrial para el posicionado de piezas para mantenimiento de puertas, cortafuegos, ventilación y seguridad general.

ELECTROIMANES RECTANGULARES

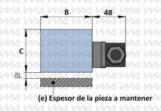
Este tipo de electroimán se fabrica con aleaciones férricas y funcional a 24 V corriente continua. Bajo pedido también se pueden fabricar en corriente alterna.

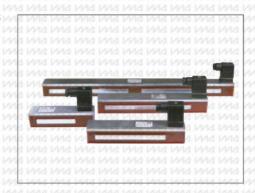

Este tipo de electroimán se activa únicamente mediante la corriente eléctrica. La conexión eléctrica se efectúa mediante un conector situado en el extremo del electroimán (1) que dispone de cuatro posibilidades de orientación (4x90º).

La cara inferior del dispositivo presenta agujeros roscados M-6 y M-8 para su fijación.

Este tipo de Truman se utiliza en robótica industrial para el procesamiento de piezas, instalaciones de transporte, etc.

El conector (1) tiene dos posibilidades de orientación (2x180°C) para tamaños IIMAREC 100/35 a IMAREC 600/35 y cuatro para tamaños IMAREC 150/60 a IMAREC 500/60 (4x90°).


C.E.- Los productos se ajustan a las normas de baja tensión 73/23 CEE. El cumplimiento de las normas de compatibilidad electromagnética de la 89/366 CEE debe ser asegurado por el usuario.



Grado de protección IP65 Clase térmica B (130°) Tensión nominal 24V DC Factor de marcha: ED 100%

Los datos de la tabla reflejados para cada tipo de electroimán nos muestran los valores de fuerza para entrehierro de 0 mm, medido en las siguientes condiciones:

- Alimentación en corriente continua
- Pieza plana F112 y del espesor indicado, con rugosidad de 3μ.
- Temperatura ambiente = 5ºC
- Bobina estabilizada a su temperatura de régimen.
- Entrehierro = 0 mm

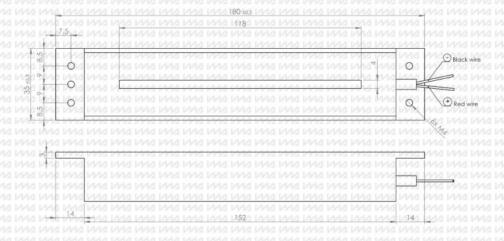
Para condiciones de trabajo diferentes, las fuerzas magnéticas disminuyen considerablemente.

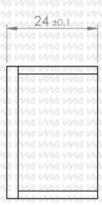
Medidas estándar (mm)

Modelo	Código	Consumo (W)	Peso Kg	A	В	С	D	E	F	Н	Nº Agujeros	е	Fza. Kg.	Fza. N.	Prensa- estopas
ma ma ma	ина ина и	a ma ma i	NG MAG	Inna	ина и	id Mad	ииа	444	nnd	inna i	иа ииа ии	11/1/1/1	3,2	32	sa inna inn
IMAREC 100/35	ELEE00031	10	0,9	125	35±0,3	34±0,1	25	50	10	M-6	2	3	39,6	396	PG-9
	MAG MAG M	a una una u	na ma	MAG	Man	a pria	1444	22/14	1114	rud l	na ma m	6	60,4	604	IN PAN PA
1444 1444 1444	1444 1444 14	a maa maa b	MA MA	1444	MAN	ta tana	1444	1444	444	9441	NA DAA DA	10	75,2	752	M MAY MA
nna nna nna	ima ima in	ia una una v	NA INI	INNI	NN9 N	td MMd	MAG	1444	MA	VALO I	иа ина ин	3	6,5 76,9	65 769	и има им
IMAREC 150/35	ELEE00029	14	1111	175	35±0,3	34±0,1	25	50	10	M-6	3	6	109	1090	PG-9
	ина ина и	a una una u	na ma	inna	MON	и ина	ina	1110	333	1914 N	иа ина ил	10	145	1450	на има им
ина ина ина	rna kna n	а киа киа к	na ma	MAG	וען מעען	ы ичы	ина	rriga.	nna	rysa s	иа ина ин	1111	8	80	и има и
IMAREC 200/35	ELEE00030	18	1,5	225	35±0,3	34±0,1	25	50	10	M-6	na ma m	3	92,8	928	PG-9
IIVIANEC 200/33	ELLEGOOGO	a waa waa u	44 144	223	20,0	3410,1	23	1111	110	141-0	na naa nn	6	140	1400	na waa wa
	MAG MAG M	ia izza izza i	na ma	ииа	инаи	ia inia	1444	ииа	446	rvid i	иа ина ин	10	175,8	1758	м има и
има има има	vna vna v	ia nna nna v	na inn	MNG	MW N	ia ima	innd	VVVII.	nna	inna i	иа ина ин	1/1/10	17,2	172	из има им
IMAREC 400/35	ELEE01288	30	2,8	425	35±0,3	34±0,1	25	50	12	M-6	8	3	210	2100	PG-9
tara tara tara	MAI DAM D	ia inna inna i ia tana tana t	Ma Mad	MM	MAG M	M MMa	MAA	MAG I	nna i	irina i Irina i	Ma Maa Ma Ma Maa Ma	6	306	3060	na inna ini Ni laasi w
1444 1444 1444	1444 1444 14	4d 144d 144d 1	44 144	1444	taas la	16 1445	1444	AAA	444	144	NA LAAR LAA	10	381	3810	85 1546 14
	ина ина и	ы има има и	MA MAS	ииа	инаи	м ина	ииа	DINN	444	MAY I	иа ина им	1111	21	210	и им им
IMAREC 500/35	ELEE00444	45	3,5	525	35±0,3	34±0,1	25	50	12	M-6	10	3	232,3	2323	PG-9
	MAG MAG M	ia inna inna i ia bisa bisa b	MA MA	MAG	MAG M	ia izizia Mana	MAA.	MAG.	nna	ma v	na ma mi	6 10	354 442,3	3540 4423	ra uma um
PVIO PVIO PVIO	PP12 PP12 P1	a pria pria p	vid PPid	PPRO	יע מעע	sa ppia	WWW	VVVI	7772	PVQ V	PER PER PER			226	אין בואין בא
MAN INNA INNA	NAVO NAVO NA	ia ima ima i	na ma	MAG	MAG M	id Mild	MAG	444	1111	nad k	na nna nn	1 3	22,6 265,3	2653	na uma un
IMAREC 600/35	ELEE00006	10 M 53 M 0 V	4,5	625	35±0,3	34±0,1	25	50	12	M-6	na 112a nn	6	405,3	4053	PG-9
	MNG MNG M	ia inna inna i	иа ии	ma	una in	ia izina M busa	MAA	MAG.	1111	nna i	na nna nn	10	502,6	5026	na waa wa
ина ина ина	ina ina n	а ина ина и	иа ии	inna	има и	и ина	1444	MA	1114	rvid l	na ma m	1114	14	140	и или и
IMAREC 150/60	ELEE00004	a masma v	2,3	180	60±1	34±0,1	40	70	12	M-8	na nya nn	3	78	780	PG-11
	1444 1444 14	la innavina i	no trac	WYNG	VANDA IA	0 120/2	1000	N. S. W.T.	773 774	220	na n n a nn	6	180	1800	14 PATATAN
MAY MAY MAY	MAN MAN M	ta taga taga t	MG MMG	INA	MAAIA	sa sasa	LAAA	MAA	nna nna	MAA L	nd prig pri	10	190	1900	na pria pr na lada laz
ина ина ина	ина ина и	а има има и	иа ииа	MA	имам	и ина	MA	inna.	000	MAG I	иа ина ин	1111	20,5	205	на има их
IMAREC 200/60	ELEE00049	40	14314	230	60±1	34±0,1	40	120	12	M-8	na vza m	3	113	1130	PG-11
	INIA MAGIN	a Ma Ma Ma k	na ini	DAM!	MAGN	ld MAG	MAG	MAG MAG	nna	nna i	na ma m	6	275	2750	na Ivna iv
PRIG PRIG PRIG	PPIG PPIG PP	a pria pria p	71d PPD	NAME :	PPIG PS	ra para	rrid	PPIG	nna	rvia i	NG PNG PN	10	276	2760	na prna pr
има има има	има има и	а ина ина и	иа или	MA	ими	ia ima	1444	MAG.	1110	nna i	иа ина ин	1	55,3	553	aa uua uu
IMAREC 500/60	ELEE01428	40	7,8	530	60±1	34±0,1	70	120	12	M-8	na v2a m	3	315	3150	PG-11
	ина ина и	ia inna inna i	na ina	INNA	Ma N	id inna	има	11/1/2	M/d	nna i	иа ила ил	6	725 745	7250	NA DANA DA
inna inna inna	inna inna in	ja ivvia ivvia k	na ins	MAG	MNG M	id ivid	MMA	WNG.	nnd	ума к	Ma NNa NN	10	745	7450	на имна их

^{*}Bajo pedido, se pueden suministrar en cualquier otra dimensión.

ELECTROIMANES RECTANGULARES PERMANENTES




Para estos electroimanes rectangulares permanentes, la sujeción y la atracción es obtenida por imanes permanentes incorporados en la barra electromagnética. Se utilizan principalmente para técnicas de automatización y seguridad.

Estos sistemas encuentran su utilidad en casos de aplicación que requieren largos períodos de sujeción sin consumo eléctrico. También suprimen el problema de desprendimiento de la carga por fallo en el suministro eléctrico.

Además de imán permanente, incorpora también una bobina que cuando se excita permite soltar la carga. Al cesar la tensión, recupera su fuerza inicial.

Grado de protección IP65 Clase térmica B (130°) Tensión nominal 24V DC Factor de marcha: ED 100%

ELECTROIMANES CIRCULARES

CORRIENTE CONTINUA

Un electroimán es un dispositivo electromagnético destinado a transformar la energía eléctrica en energía mecánica, los electroimanes de corriente continua se fabrican con aleaciones férricas y funcionan a 24 V corriente continua. Su funcionamiento es muy sencillo, cuando activamos la corriente se genera un campo magnético que queda concentrado en la armadura de hierro, permitiendo así cualquier tipo de sujeción.

Destinados a un funcionamiento intensivo sin límite de maniobras y servicio permanente. Su principal característica es su gran fuerza de retención con un consumo mínimo de corriente moderado. Estos electroimanes se utilizan para manejar y manipular piezas ferromagnéticas en robótica industrial, para posicionamiento de piezas, para el mantenimiento de puertas, cortafuegos, aireación y seguridad general.

TERMINALES LIBRES

(e) Espesor de la pieza a mantener Cara de atracción

& Longitud 200 mm.

Grado de protección: IP 30 / Inferiores al VEM-65 Grado de protección: IP 65 / a partir del VEM-65

Clase térmica B (130°) Tensión nominal 24V DC Factor de marcha: ED 100%

Bobinas normalizadas 24 V = ED. 100% servicio permanente.

Para condiciones de trabajo diferentes, las fuerzas disminuyen considerablemente.

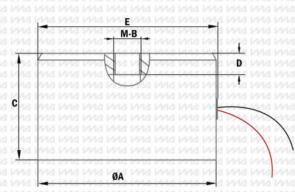
Los datos de la tabla reflejados para cada tipo de electroimán nos muestran los valores de fuerza para entrehierro de 0 mm, medido en las siguientes condiciones:

- Alimentación en corriente continua
- Pieza plana F 112 y del espesor indicado con rugosidad de 3μ
- Temperatura ambiente = 35 ºC
- Bobina estabilizada a su temperatura de régimen
- Entrehierro = 0

Para condiciones de trabajo diferentes, las fuerzas magnéticas disminuyen considerablemente.

Medidas estándar (mm)*

Modelo	Código	Consumo (W)	Peso Kg	ØA	В	C	D	E	F	е	Frz. Kg.	Frz. N.
VEM-20	ELEE00012	1,6	100000000000000000000000000000000000000	20	M-3	12		a inna b a inesa b	na ma na ma		1,45	
ia ivna ivna ia ivna ivna	nna ima ima ma ima ima	i ma ma m i ma ma m	a ima ima a ima ima		na ma		MA IM MA IM	a bna b a bna b	na ima na ima	3	2,7	27
M INNA INNA IN	MAG IMAG IMAG	MA MA M	A MAG MAG	MAG I	144 MAG	MAN PANE	444 MM	a inna i	na ima na ima	ma ima	2,7	27
VEM-25	ELEE0007	3,2	0,06	25	M-4	20	6	ם ואיזע ו	na ima	311	11,4	114
a una una	MA MA MA	i Ma Ma M i Ma Ma M	a ma ma		na ma		MA DIN	a una u	na ma	6	13,5	135
a una una	nna ma ma	има има им	a Ma Ma	MAL	144 1444	MAT	MA M	a inna i	na ma	ana i ma	3,7	37
VEM-30	ELEE0020	4	0,10	30	M-4	22	6	a waa k	na ma . na ma	3	17	170
a ima ima	nna inna inno	ina ina in	a ma ma		na ima		na in	a inna i	na ima	M6 M4	1914	
a inna inna a inna inna	MAA MAA MA MAA MAA MA	i Maa Maa Ma	a inna inna	MAG N	na ma	NAM P	na na	a maa l	Ma Maa	1111	3,8	38
VEM-40	ELEE00017	5,6	0,20	40	M-5	26	8	87	55	ma ₃ ma	30	300
a ima ima a ima ima	nna ima ima ma ima ima	i waa isaa isa i waa isaa isa	a inna inna a inna inna		na ma na ma				na ma na ma	6	40	400
A LUAN LUAN	UNA DATA DA	1000 1000 100	1 1444 1444	MAG I	10 110	LAAA L	100 100	9 1449 1	MARIANA	1	4 4 4	40
VEM-50	ELEE00002	6,5	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	50	M-5	30	8	97	65	3 14	32	DOLLONG I
a inna inna inna inna in	MAG MAG MAG MAG MAG MAG	i waa ima im i ma ima im	a inna inna a inna inna		148 1448 148 1448		Ma Ma	a maa k a maa k	na ma	6	50	500
מאא מאא מ	PPE PPE PPE	vna vna vn	אייע מוייע מ	PPIG P	KINI MANG	PENS P	אמ אויי	a PPPIG P	NG PNG	7710	4,5	45
VEM-65	ELEE00014	10	0,80	65	M-8	35	12	112	80	3	31	310
a PNA PNA	PMA IMA PM	ואו מאו מאו			na ina		MA IM	a inna i	иа ина	6	83	830
a una una	nna inna inno	i waa waa wa	a ina ina	MAN	da ina	PNP P	MA MA	а има и	иа ииа	10	98	980
a una una a una una	nna inna inno inna inna inno	i inna inna inn i inna inna inn	A MAS MAS		na ina		na in	a iana i	ma ma	1111	6,5	65
VEM-80	ELEE00013	15	1,30	80	M-8	38	12	127	95	3	43	430
a ima ima	nna ima ime	i ina ina ina	a inta inta		na ma		nd m	a inna i	ma ma	6	115 200	1150 2000
ia inna inna	MAG MAG MAG	I MAG MAG MA	d Inna Inna	MAG	vaa inna	NNV	Ma M	a Maa k	Ma Maa	10	St. R. St. St. St. St. St.	102 11 21 21 21
ia inna inna ia inna inna	MAG MAG MAG	i Maa Maa Ma i Maa laga Ma	a inna inna	MAG P	na inna		ma inn	a waa k	na ma	1110 1110 1110	53	70 530
VEM-100	ELEE00020	20	2,10	100	M-10	43	15	147	115	6	140	1400
a una una	ma ma mo	i ima ima im	a inna inna		na ima		na m	a inna i	na ma	10	260	2600
a ima ima a ima ima	rma inna inno inna inna inno	i Maa Maa Ma Maa Maa Ma	a land land a land land	MAG D	140 MAG	NAG N	444 MA	a inna i	na ma	3	70	700
VEM-150	ELEE00011	40	6,40	150	M-16	56	24	197	165	6	181	1810
A FIAI-TOO	ELECUOIT	una ima im	0,40	150	IAI-TQ		124	197	103	10	580	5800
a ivia ivia	una una una	i kna kna kn	d IMM IMM		na inna		na m	a inna i	na ma	18	710,4	7104
d Mad Mad	MAG MAG MAG	i una una un	d IANG IANG	MAG I	1/2 1/1/2	NNA I	Ma M	a para p	Ma MA	3	105	1050
VEM-200	ELEE01251	40 40	13.40	200	M-20	70	35	247	215	6	296	2960
ia ima ima	una una una	i waa waa wa	d Mis Mid		vid ivind	NNA N	Ma M	a lana i	Ma Ma	10	774	7740
а има има	nna nna nno	има има им	a nna nna		vsa inna		иа ии	a inna i	иа ина	20	1540	15400


CORRIENTE CONTINUA ELECTROPERMANENTE (Neodimio)

Estos electroimanes se fabrican con imanes de neodimio y funcionan a 24 V. Su funcionamiento es muy sencillo, su campo magnético queda concentrado en la armadura de hierro, permitiendo así cualquier tipo de sujeción. Cuando es conectado a la corriente, este campo magnético queda eliminado, permitiendo soltar la carga, y al cesar la tensión el imán recupera su fuerza inicial.

La atracción y el mantenimiento de las piezas magnéticas son obtenidos por imanes permanentes incorporados en la ventosa, de esta manera eliminamos el problema de desprendimiento de la carga por fallo en la tensión de alimentación. Además de los imanes, incorpora un bobinado que cuando se excita permite soltar la carga, al cesar la tensión, el imán recupera su fuerza inicial.

Cuando se trabaja con cargas suspendidas deberán respetarse las correspondientes normas de seguridad.

Los electroimanes IMA se utilizan en robótica industrial, para posicionamiento de piezas, para el mantenimiento de puertas, cortafuegos, aireación y seguridad general.

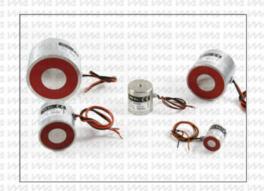
C.E. - Los productos se ajustan a las normas de baja tensión 73/23 CEE. El cumplimiento de las normas de compatibilidad electromagnética de la 89/366 CEE debe ser asegurada por el usuario.

Posibilidades de suministro: Terminales libres de todos los tamaños, borna a partir de la IMA VP-30 y el conector a partir de IMA VP-65.

El conector tiene cuatro posibilidades de orientación (4x90º).

Fabricado de acuerdo con las normas: DIN VDE0580. NFC79300 y UNE-EN60204-1. CE: el aparato es conforme a la Directiva de baja tensión europea 73/23/CEE sobre el material eléctrico destinado a utilizarse con determinados límites de tensión y modificación 93/68/CEE.

El cumplimiento de las normas EMV89/336CEE (compatibilidad electromagnética) debe ser asegurada por el usuario.

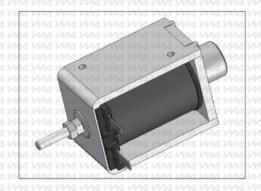

Salvo indicación contraria:

- cotas en milímetros
- ángulos en grados
- tolerancias ± 0,1 y ± 5'
- Entrehierro = 0

Los datos de la tabla reflejados para cada tipo de electroimán nos muestran los valores de fuerza para entrehierros de 0 mm, medido en las siguientes condiciones:

- Alimentación en corriente continua
- Pieza F112 y del espesor indicado, con rugosidad de 3μ
- Temperatura ambiente = 25 ºC
- Bobina estabilizadora a su temperatura de régimen
- Entrehierro = 0

La remanencia que persiste durante la neutralización de los imanes es de aproximadamente el 2% de la fuerza de retención.


Medidas estándar (mm)*

Modelo	Código	Consumo (W)	Peso Kg	ØA	В	С	D	Ε	e	Frz. Kg.	Frz. N.	Factor Marcha ED%
a inna inna	IMA IMA I	na inna inna i	DINI DN	MAG IA	d MAd	and lav	d Midd	N DANI	1	2,2	22	ne inna inna inna
VP-20	ELEE01030	11,6	0,04	20	M-3	25	6	26	3	3,9	39	20
	I MAG MAG M	na ivna ivna i	MA MAA	NN DNN	d Ma	MA IN	d Mad	NN DNN	10	3,9	39	ad inna inna inna ad inna inna inna
a una una	има има и	na ima ima i	ма има	имаи	a ma	MAIN	и има	имаи	14 1144	4,6	46	na inna inna inna
VP-30	ELEE01016	25	0,13	30	M-4	32,5	6	35,2	3	18,1	181	20
	има има и	на ина ина в	иа ииа	инаи	a una	Ma W	id Midd	NN9 N	10	18,1	181	ra una una una
a inna inna	IVA IVA I	na ima ima i	na ma	NN4 N	MINN	MAIN	a lans	NN9 N	1	5,1	51	na ma ma ma
VP-40	ELEE01036	42	0,28	40	M-5	41,7	6	42,7	3	20,5	205	15
	ина ина и	на има има в	иа ина	имаи	a ima	Ma W	a 144a	имаи	10	27	270	ia ima ima ima
a ivvia ivvid a ivvia ivvid	PINA PNA N	na izna izna i vid izna izna i	nna ivina Nna ivina	PPRO PI	da vivia da vivia	ANG DA	ia inna strit bi	N BNN	1	6	60	ta izna izna izna ta izna izna izna
VP-50	ELEE01018	48	0,45	50	M-5	42,8	6	52,5	14 3144	30,4	304	14 Ma 1 15 a Ma
	inna inna in Inna inna in	na ima ima i na ima ima i	ма има ма има	ина и ина и	d ima	ma w	ia inno ia inno	INI BINI	10	60,7	607	na ivna ivna ivna na ivna ivna ivna
SNA DNA D	NAME DANS	I BANI BANI BA	DANI DAN	NNA N	d Ma	AND DA	M MAN	N PMM	1 1 1 1 1	Ma 7Ma M	70	na ima ima ima
VP-65	ELEE01074	80	0,74	65	M-8	45,5	8	67	3	37,4	374	14 ma 115 a ma
a inna inna a inna inna	i inna inna in inna inna in	na ima ima i na ima ima i	nna inna ma inna	nna n	a inna	ma w	ia inna ia inna	INMA IN	10	122	1220	na inna inna inna na inna inna inna
a una una a una una	i ima ima i ima ima i	na una una i na una una i	ma ima ma ima	MAN M	d ind	ma w	a mad a mad	INMA IN	3/14	42,1	421	nd inna inna inna nd inna igga inna
VP-100	ELEE01053	na 147 5 ma 1 na 144a 144a 1	ма 3 ма ма има	100	M-10	67	10	102	10	225,4	2254	na ma 25 a ma
a waa waa a waa waa	IMA IMA I	na ima ima i na ima ima i	1414 1414 1414 1414	MAY N	da landa da landa	ANA IAV	a ma	MAY N	14 1444 14 1444	7,8	78	ad und und und Ad und und und
VP-150	ELEE01108	77	7,1	150	M-16	65	15	152	3	61,5	615	40
	има има и	на има има і	иа ина	инаи	d Ma	man	a Mad	ими	10	22,5	2250	a ma ma ma

SERIE ER

ELECTROIMANES LINEALES DE SIMPLE EFECTO

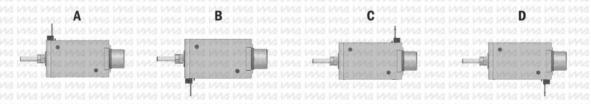
Los electroimanes de la serie ER son lineales de simple efecto, en los cuales el movimiento de carrera desde la posición inicial a la final se realiza por acción de fuerzas electromagnéticas, el retorno a la posición inicial se lleva a efecto por fuerzas exteriores o por resorte incorporado al electroimán.

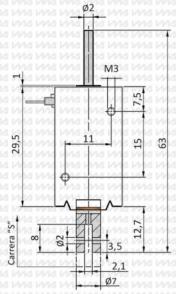
Condiciones de las fichas técnicas:

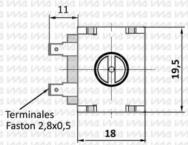
los valores de la fuerza magnética (Fm) en función de la carrera están obtenidos en las condiciones siguientes:

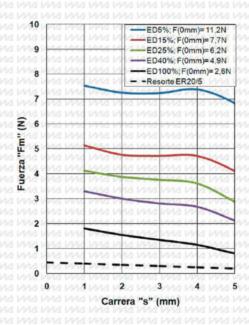
- Temperatura ambiente = 35 ºC
- Bobina estabilizada a su temperatura de trabajo
- Tensión de alimentación igual al 90% de la nominal
- Electroimán en posición horizontal

La fuerza útil se obtiene de la fuerza magnética (Fm) sumando o restando el peso del núcleo móvil.


- Cuando el electroimán tira hacia arriba: fuerza útil = fuerza magnética peso del núcleo móvil.
- Cuando el electroimán tira hacia abajo: fuerza útil = fuerza magnética + peso del núcleo móvil.
- Cuando el electroimán tira en posición horizontal: fuerza útil = fuerza magnética.
- Para los aparatos que lleven incorporado el resorte de entorno: fuerza útil = fuerza magnética fuerza de resorte + peso del núcleo móvil.






Disposiciones terminales de conexión:

El montaje de las hojas técnicas es el de la serie, bajo demanda se pueden montar en las posiciones aquí representadas, indicar en el pedido. Bajo demanda se pueden sustituir los terminales por conductores libres.

ER20/C - ELEE01265

Factor de marcha ED (%)	100	40	25	15	5
Consumo a 20 °C (W)	5,5	11	16	24	60
Fuerza mínima (N)	0,8	2,1	2,8	4,1	6,8
T máx. de excitación (S)	∞	48	30	18	6
Peso del núcleo móvil (g)	MA L	MAD IN	12	MA IA	10 V
Peso del electroimán (g)	via v	иаи	45	na ia	48 V

Factor de Marcha		Tensiones normalizadas								Tensiones bajo demanda					
ED (%)				VDC				V	AC	VDC VA			AC		
De late Mile Into Mile I	6	12	24	48	100	125	205	110	230	Min	Max	Min	Max		
14 MA M 100 MA MA P	0	0	0	0	Х	Х	Х	X	Х	3	85	Х	Х		
40	0	0	0	0	0	0	Х	Х	Х	3	125	Х	Х		
na una uv25 ma una u	0	0	0	0	0	0	X	X	Х	3	150	X	X		
15	0	0	0	0	0	0	X	Х	Х	4	180	Х	Х		
na tana pan 5 tana pana b	0	0	0	0	0	0	0	X	Х	5	230	Х	X		

Leyenda: 0= Disponible; X= No disponible

Tensión bajo demanda: se puede fabricar a cualquier tensión dentro del rango limitado por las tensiones mínimas y máximas.

Para alimentar en alterna, el electroimán llevará un rectificador incorporado en el propio bobinado.

Los factores de marcha descritos en la tabla son los normalizados, se puede fabricar a cualquier factor de marcha intermedio.

Para cualquier variación sobre el montaje original, consultar.

Denominación para pedido: ER20/C -V ED-% - Posición montaje - Resorte

Ejemplos

- 1- Tensión nominal: 24 Vdc Factor de marcha: ED100%: Posición montaje A: Con resorte: ER20/C 24 Vdc ED100% A RS
- 2- Tensión nominal: 12 Vdc Factor de marcha: ED15%: Posición montaje C: Sin resorte: ER20/C 12 Vdc ED15% C RN

ER21/C - ELEA01208

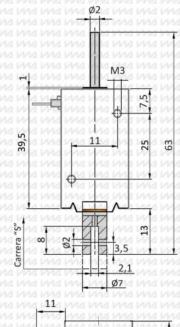
Factor de marcha ED (%)	100	40	25	15	5
Consumo a 20 °C (W)	6	14	24	35	100
Fuerza mínima (N)	1,3	2,3	3,1	4,1	6,2
T máx. de excitación (S)	∞	48	30	18	6
Peso del núcleo móvil (g)	ana i	ma i	12	Ma K	na k
Peso del electroimán (g)	ma l	Ma I	62	Ma V	NO h

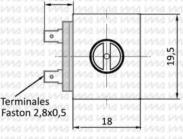
Factor de Marcha		a ton	Tens		Tensiones bajo demanda								
ED (%)				VDC				VAC		VDC		VAC	
	6	12	24	48	100	125	205	110	230	Min	Max	Min	Max
ma ma 100° ma m	0	0	0	0	0	Х	X	Х	Χ	3	110	X	Х
40	0	0	0	0	0	0	X	Х	Х	4	165	Х	Х
nna nna 25 a nna nn	0	0	0	0	0	0	0	Х	Х	5	220	Х	Х
15 Ma Ma Ma	0	0	0	0	0	0	0	Х	Х	6	230	Х	Х
1999 1999 1 5 19 1999 1999	Х	0	0	0	0	0	0	Х	Х	9	230	Х	Х

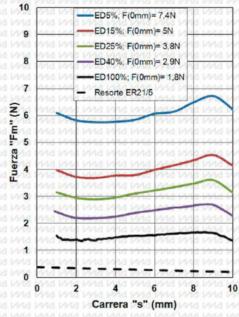
Leyenda: 0= Disponible; X= No disponible

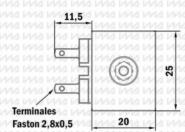
Tensión bajo demanda: se puede fabricar a cualquier tensión dentro del rango limitado por las tensiones mínimas y máximas.

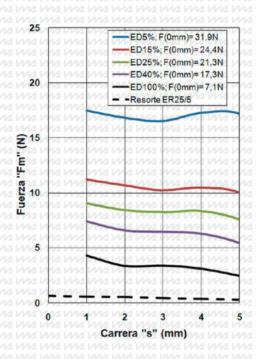
Para alimentar en alterna el electroimán llevará un rectificador incorporado en el propio bobinado.


Los factores de marcha descritos en la tabla son los normalizados, se puede fabricar a cualquier factor de marcha intermedio.


Para cualquier variación sobre el montaje original, consultar.


Denominación para pedido: ER21/C -V ED-% - Posición montaje - Resorte


Ejemplos:


- 1- Tensión nominal: 24 Vdc Factor de marcha: ED100%: Posición montaje A: Con resorte: ER21/C 24 Vdc ED100% A RS
- 2- Tensión nominal: 12 Vdc Factor de marcha: ED15%: Posición montaje C: Sin resorte: ER21/C 12 Vdc ED15% C RN

ER25/C - ELEA01524

Factor de marcha ED (%)	100	40	25	15	5
Consumo a 20 °C (W)	7,5	17	25	38	95
Fuerza mínima (N)	2,5	5,4	7,5	10	17
T máx. de excitación (S)	00	48	30	18	6
Peso del núcleo móvil (g)	(MV	MAG	15	MAG	MV.
Peso del electroimán (g)	LIME	LIMAG	85	Mad	NW.

Factor de Marcha	Tensiones normalizadas										Tensiones bajo demanda			
ED (%)	75.5		MA	VDC				V	AC	VDC		VAC		
LE TANK DOUG TANK DOUG D	6	12	24	48	100	125	205	110	230	Min	Max	Min	Max	
ia ima in 100 na ima v	0	0	0	0	0	0	X	Х	Х	3	140	X	Х	
40	0	0	0	0	0	0	0	Х	Х	5	220	Х	Х	
a una un 25 ma una v	0	0	0	0	0	0	0	Х	Х	5	230	X	X	
ia ima im ₁₅ ma ima i	0	0	0	0	0	0	0	Х	Х	6	230	X	Х	
10 1790 1790 5 7910 17910 17	Х	0	0	0	0	0	0	Х	Х	9	230	Х	Х	

Leyenda: 0= Disponible; X= No disponible

Tensión bajo demanda: se puede fabricar a cualquier tensión dentro del rango limitado por las tensiones mínimas y máximas.

Para alimentar en alterna, el electroimán llevará un rectificador incorporado en el propio bobinado.

Los factores de marcha descritos en la tabla son los normalizados, se puede fabricar a cualquier factor de marcha intermedio.

Para cualquier variación sobre el montaje original, consultar.

Denominación para pedido: ER25/C -V ED-% - Posición montaje - Resorte

Ejemplos:

- 1- Tensión nominal: 24 Vdc Factor de marcha: ED100%: Posición montaje A: Con resorte: ER25/C 24 Vdc ED100% A RS
- 2- Tensión nominal: 12 Vdc Factor de marcha: ED15%: Posición montaje C: Sin resorte: ER25/C 12 Vdc ED15% C RN

ER30/C - ELEA01215

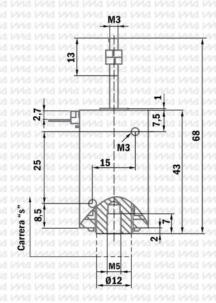
Factor de marcha ED (%)	100	40	25	15	5
Consumo a 20 °C (W)	8	20	30	50	120
Fuerza mínima (N)	2,9	5,6	7,8	11,4	19,7
T máx. de excitación (S)	00	48	30	18	6
Peso del núcleo móvil (g)	o MA	à PPR	25	i PNV	ИИ
Peso del electroimán (g)	o ppp	a NAN	140	PNO	KNX

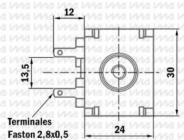
Factor de Marcha		8 LAG 8 LAG	Tensi	Tensiones bajo demanda									
ED (%)				VDC				VAC		VDC		VAC	
	6	12	24	48	100	125	205	110	230	Min	Max	Min	Max
ma ma 100 a ma m	0	0	0	0	0	0	X	0	0	3	200	24	230
40	0	0	0	0	0	0	0	0	0	5	230	50	230
una una 251a una un	0	0	0	0	0	0	0	0	0	6	230	75	230
ma ma 151a ma m	0	0	0	0	0	0	0	X	0	6	230	125	230
0444 1444 5 44 1444 144	Х	0	0	0	0	0	0	Х	Х	9	230	Х	Х

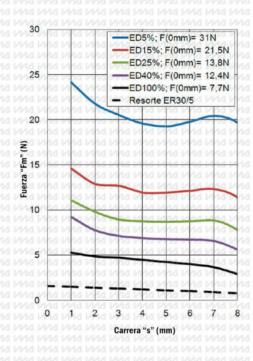
Leyenda: 0= Disponible; X= No disponible

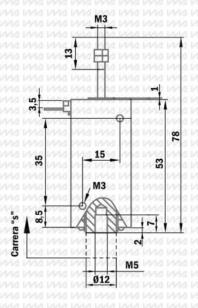
Tensión bajo demanda: se puede fabricar a cualquier tensión dentro del rango limitado por las tensiones mínimas y máximas.

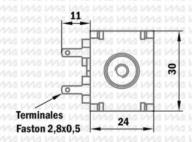
Para alimentar en alterna, el electroimán llevará un rectificador incorporado en el propio bobinado.

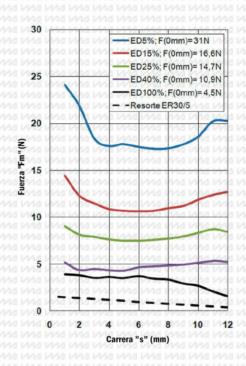

Los factores de marcha descritos en la tabla son los normalizados, se puede fabricar a cualquier factor de marcha intermedio.


Para cualquier variación sobre el montaje original, consultar.


Denominación para pedido: ER30/C -V ED-% - Posición montaje - Resorte


Ejemplos:


- 1- Tensión nominal: 24 Vdc Factor de marcha: ED100%: Posición montaje A: Con resorte: ER30/C 24 Vdc ED100% A RS
- 2- Tensión nominal: 12 Vdc Factor de marcha: ED15%: Posición montaje C: Sin resorte: ER30/C 12 Vdc ED15% C RN



ER35/C - ELEA01225

Factor de marcha ED (%)	100	40	25	15	5
Consumo a 20 °C (W)	9	20	35	60	150
Fuerza mínima (N)	1,5	4,3	7,5	10,6	17,3
T máx. de excitación (S)	∞	48	30	18	6
Peso del núcleo móvil (g)	da M	10.10	34	34 1/1/	ии
Peso del electroimán (g)	va N	na In	170	na inv	MIN

Factor de Marcha			Tens	siones normalizadas Tensiones baj demanda									
ED (%)				VDC				V	AC	V	DC	V	AC
on their bear land to the forest	6	12	24	48	100	125	205	110	230	Min	Max	Min	Max
100	0	0	0	0	0	0	0	0	0	4	230	36	230
a ma m 40 na ma n	0	0	0	0	0	0	0	0	0	5	230	75	230
25 /4 ///4 //	0	0	0	0	0	0	0	0	0	6	230	105	230
יו פרון בער 15	Χ	0	0	0	0	0	0	Х	0	8	230	180	230
a ima ima s ma ima i	Χ	0	0	0	0	0	0	Х	Х	12	230	X	Х

Leyenda: 0= Disponible; X= No disponible

Tensión bajo demanda: se puede fabricar a cualquier tensión dentro del rango limitado por las tensiones mínimas y máximas.

Para alimentar en alterna, el electroimán llevará un rectificador incorporado en el propio bobinado.

Los factores de marcha descritos en la tabla son los normalizados, se puede fabricar a cualquier factor de marcha intermedio.

Para cualquier variación sobre el montaje original, consultar.

Denominación para pedido: ER35/C -V ED-% - Posición montaje - Resorte

Ejemplos:

- 1- Tensión nominal: 24 Vdc Factor de marcha: ED100%: Posición montaje A: Con resorte: ER35/C 24 Vdc ED100% A RS
- 2- Tensión nominal: 12 Vdc Factor de marcha: ED15%: Posición montaje C: Sin resorte: ER35/C 12 Vdc ED15% C RN

ER45-05/C - ELEA01226

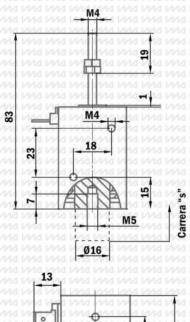
Factor de marcha ED (%)	100	40	25	15	5
Consumo a 20 °C (W)	12	30	48	80	240
fuerza mínima (N)	0,1	6,3	10,6	14,4	35
T máx. de excitación (S)	∞	60	38	23	8
Peso del núcleo móvil (g)	a luva	a PVV	59	ии	MA
Peso del electroimán (g)	o Ma	3 WW	285	IVVIQ	MAK

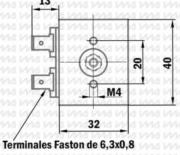
Factor de Marcha		i jan	Tensi	ione	nor	mali	zada	5	A44			es bajo anda	
ED (%)				VDC				V	AC	V	DC	VAC	
	6	12	24	48	100	125	205	110	230	Min	Max	Min	Max
ma ma 100a ma m	0	0	0	0	0	0	0	0	0	5	230	34	230
ma ma 40 a ma m	X	0	0	0	0	0	0	0	0	7	230	86	230
25	Х	0	0	0	0	0	0	Х	0	9	230	136	230
151a 141a 141a	X	0	0	0	0	0	0	Х	0	11	230	230	230
nna nna 1 ₅ 1a nna nn	X	Х	0	0	0	0	0	Х	Х	16	230	Х	X

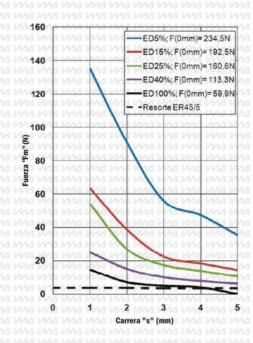
Leyenda: 0= Disponible; X= No disponible

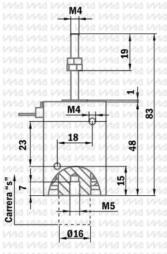
Tensión bajo demanda: se puede fabricar a cualquier tensión dentro del rango limitado por las tensiones mínimas y máximas.

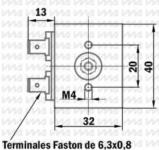
Para alimentar en alterna, el electroimán llevará un rectificador incorporado en el propio bobinado.

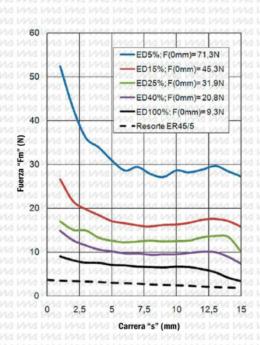

Los factores de marcha descritos en la tabla son los normalizados, se puede fabricar a cualquier factor de marcha intermedio.


Para cualquier variación sobre el montaje original, consultar.


Denominación para pedido: ER45-05/C -V ED-% - Posición montaje - Resorte


Ejemplos:


- 1- Tensión nominal: 24 Vdc Factor de marcha: ED100%: Posición montaje A: Con resorte: ER45-05/C 24 Vdc ED100% A RS
- 2- Tensión nominal: 12 Vdc Factor de marcha: ED15%: Posición montaje C: Sin resorte: ER45-05/C 12 Vdc ED15% C RN



ER45-15/C - ELEA01227

Factor de marcha ED (%)	100	40	25	15	5
Consumo a 20 °C (W)	12	30	48	80	240
Fuerza mínima (N)	3,3	7,3	10	15,5	27
T máx. de excitación (S)	000	60	38	23	6
Peso del núcleo móvil (g)	na m	AA IA	59	AG INN	a vv
Peso del electroimán (g)	na in	aa in	285	aa loo	aw

Factor de Marcha		LOAD!	Tensi	ione	s nor	mali	zada	S			nsion dem		
ED (%)				VDC				V	AC	V	DC	VAC	
	6	12	24	48	100	125	205	110	230	Min	Max	Min	Max
ma ma 1100 ma ma	0	0	0	0	0	0	0	0	0	5	230	34	230
40	X	0	0	0	0	0	0	0	0	7	230	86	230
na ma (25) ma ma	X	0	0	0	0	0	0	Х	0	9	230	136	230
ma ima in ₁₅ 2 ima ima	X	0	0	0	0	0	0	Х	0	11	230	230	230
5	X	Х	0	0	0	0	0	Х	Х	16	230	Х	Х

Leyenda: 0= Disponible; X= No disponible

Tensión bajo demanda: se puede fabricar a cualquier tensión dentro del rango limitado por las tensiones mínimas y máximas.

Para alimentar en alterna, el electroimán llevará un rectificador incorporado en el propio bobinado.

Los factores de marcha descritos en la tabla son los normalizados, se puede fabricar a cualquier factor de marcha intermedio.

Para cualquier variación sobre el montaje original, consultar.

Denominación para pedido: ER45-15/C -V ED-% - Posición montaje - Resorte

Ejemplos:

- 1- Tensión nominal: 24 Vdc Factor de marcha: ED100%: Posición montaje A: Con resorte: ER45-15/C 24 Vdc ED100% A RS
- 2- Tensión nominal: 12 Vdc Factor de marcha: ED15%: Posición montaje C: Sin resorte: ER45-15/C 12 Vdc ED15% C RN

ER50-15/C - ELEA01381

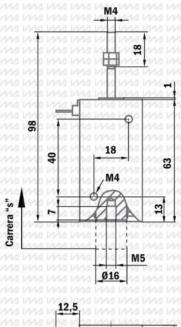
Factor de marcha ED (%)	100	40	25	15	5
Consumo a 20 °C (W)	14	35	56	93	280
Fuerza mínima (N)	6,7	13	16	23	37
T máx. de excitación (S)	000	60	38	23	8
Peso del núcleo móvil (g)	a park a baas	I PPV	71	PPV	L DOM
Peso del electroimán (g)	g MMs	S MAN	365	I WW	NA NA

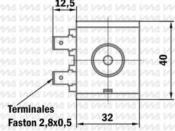
Factor de Marcha		8 140 8 141	Tensi	one	nor	mali	zada	S			nsion dem		
ED (%)				VDC				V	AC	V	DC	V	AC
	6	12	24	48	100	125	205	110	230	Min	Max	Min	Max
Ma Ma 100 a Ma M	0	0	0	0	0	0	0	0	0	6	230	41	230
40	X	0	0	0	0	0	0	0	0	9	230	100	230
una una 251a una un	Х	0	0	0	0	0	0	Х	0	11	230	160	230
ima ima 151a ima im	X	X	0	0	0	0	0	X	0	15	230	230	230
1940 PAG 544 1444 PAG	Х	Х	0	0	0	0	0	Х	Х	24	230	Х	Х

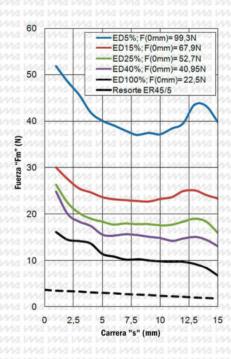
Leyenda: 0= Disponible; X= No disponible

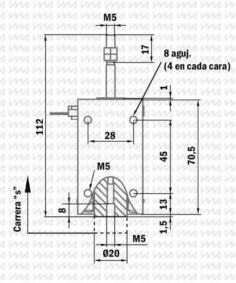
Tensión bajo demanda: se puede fabricar a cualquier tensión dentro del rango limitado por las tensiones mínimas y máximas.

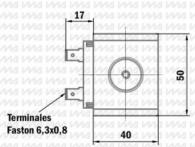
Para alimentar en alterna, el electroimán llevará un rectificador incorporado en el propio bobinado.

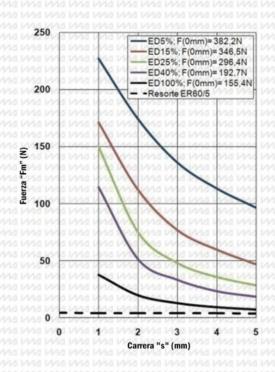

Los factores de marcha descritos en la tabla son los normalizados, se puede fabricar a cualquier factor de marcha intermedio.


Para cualquier variación sobre el montaje original, consultar.


Denominación para pedido: ER50-15/C -V ED-% - Posición montaje - Resorte


Ejemplos:


- 1- Tensión nominal: 24 Vdc Factor de marcha: ED100%: Posición montaje A: Con resorte: ER50-15/C 24 Vdc ED100% A RS
- 2- Tensión nominal: 12 Vdc Factor de marcha: ED15%: Posición montaje C: Sin resorte: ER50-15/C 12 Vdc ED15% C RN



ER60-05/C - ELEA01238

Factor de marcha ED (%)	100	40	25	15	5
Consumo a 20 °C (W)	18	45	70	110	280
Fuerza mínima (N)	7	18	28	47	96
T máx. de excitación (S)	00	120	75	45	15
Peso del núcleo móvil (g)	MAG !	nna l	117	ma v	via v
Peso del electroimán (g)	nna i	rria i	650	nna k	vaa v

Factor de Marcha			Tensi	one	s nor	mali	zada	5			nsion dem		
ED (%)		Tial	100	VDC		144	i i	V	AC	V	DC	V	AC
TALK PATE TALK PATE TOO	6	12	24	48	100	125	205	110	230	Min	Max	Min	Max
100	X	0	0	0	0	0	0	0	0	7	230	48	230
ma ma 40 a ma m	Х	0	0	0	0	0	0	Х	0	11	230	125	230
1414 MA 25 14 MA M	X	X	0	0	0	0	0	Х	0	13	230	200	230
15	Х	Х	0	0	0	0	0	Х	Х	16	230	Х	Х
inna inna i5na inna inn	X	X	0	0	0	0	0	Χ	Х	24	230	X	X

Leyenda: 0= Disponible; X= No disponible

Tensión bajo demanda: se puede fabricar a cualquier tensión dentro del rango limitado por las tensiones mínimas y máximas.

Para alimentar en alterna, el electroimán llevará un rectificador incorporado en el propio bobinado.

Los factores de marcha descritos en la tabla son los normalizados, se puede fabricar a cualquier factor de marcha intermedio.

Para cualquier variación sobre el montaje original, consultar.

Denominación para pedido: ER60-05/C -V ED-% - Posición montaje - Resorte

Ejemplos:

- 1- Tensión nominal: 24 Vdc Factor de marcha: ED100%: Posición montaje A: Con resorte: ER60-05/C 24 Vdc ED100% A RS
- 2- Tensión nominal: 12 Vdc Factor de marcha: ED15%: Posición montaje C: Sin resorte: ER60-05/C 12 Vdc ED15% C RN

ER60-10/C - ELEA01239

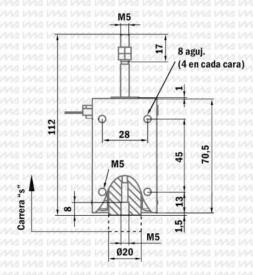
Factor de marcha ED (%)	100	40	25	15	5
Consumo a 20 °C (W)	18	45	70	110	280
Fuerza mínima (N)	12	24	32	44	80
T máx. de excitación (S)	000	120	75	45	15
Peso del núcleo móvil (g)	i Miss	เทย	117	inna	MAG
Peso del electroimán (g)	i NAK	з има	650	1 MM2	MAG

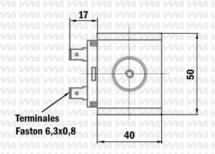
Factor de Marcha		a baq a bani	Tensi	ione	nor	mali	zada	5		Tei		ones bajo emanda		
ED (%)		a Lan	1100	VDC		List		V	AC	V	DC	VAC		
	6	12	24	48	100	125	205	110	230	Min	Max	Min	Max	
100	Х	0	0	0	0	0	0	0	0	7	230	48	230	
40	Х	0	0	0	0	0	0	Х	0	11	230	125	230	
Ma Ma 25 a Ma M	X	X	0	0	0	0	0	Х	0	13	230	200	230	
15	X	Х	0	0	0	0	0	Х	Х	16	230	Х	Х	
una una 151a una un	Х	X	0	0	0	0	0	Х	Х	24	230	X	X	

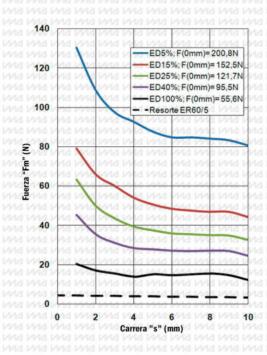
Leyenda: 0= Disponible; X= No disponible

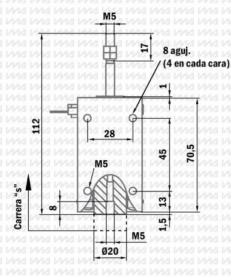
Tensión bajo demanda: se puede fabricar a cualquier tensión dentro del rango limitado por las tensiones mínimas y máximas.

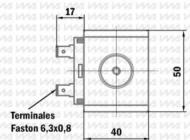
Para alimentar en alterna, el electroimán llevará un rectificador incorporado en el propio bobinado.

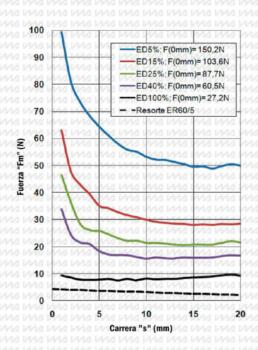

Los factores de marcha descritos en la tabla son los normalizados, se puede fabricar a cualquier factor de marcha intermedio.


Para cualquier variación sobre el montaje original, consultar.


Denominación para pedido: ER60-10/C -V ED-% - Posición montaje - Resorte


Ejemplos:


- 1- Tensión nominal: 24 Vdc Factor de marcha: ED100%: Posición montaje A: Con resorte: ER60-10/C 24 Vdc ED100% A RS
- 2- Tensión nominal: 12 Vdc Factor de marcha: ED15%: Posición montaje C: Sin resorte: ER60-10/C 12 Vdc ED15% C RN



ER60-20/C - ELEA01240

Factor de marcha ED (%)	100	40	25	15	5
Consumo a 20 °C (W)	18	45	70	110	280
Fuerza mínima (N)	9,2	16,7	21,5	28,5	50
T máx. de excitación (S)	00	120	75	45	15
Peso del núcleo móvil (g)	áии	аии	117	NN I	M
Peso del electroimán (g)	g NN	a inn	650	1 IANG	W

Factor de Marcha		OUT IS	Tensi	one	s nor	mali	ada	s		Tensiones bajo demanda				
ED (%)	VDC						V	AC	VDC VAC					
TALK MIN INC. MINI	6	12	24	48	100	125	205	110	230	Min	Max	Min	Max	
100	X	0	0	0	0	0	0	0	0	7	230	48	230	
40	Х	0	0	0	0	0	0	Х	0	11	230	125	230	
a una un25 ma una v	Х	X	0	0	0	0	00	X	0	13	230	200	230	
15	Х	Х	0	0	0	0	0	Х	Х	16	230	Х	Х	
a 1944 194 5 1944 1944 1	X	X	0	0	0	0	0	X	X	24	230	X	X	

Leyenda: 0= Disponible; X= No disponible

Tensión bajo demanda: se puede fabricar a cualquier tensión dentro del rango limitado por las tensiones mínimas y máximas.

Para alimentar en alterna, el electroimán llevará un rectificador incorporado en el propio bobinado.

Los factores de marcha descritos en la tabla son los normalizados, se puede fabricar a cualquier factor de marcha intermedio.

Para cualquier variación sobre el montaje original, consultar.

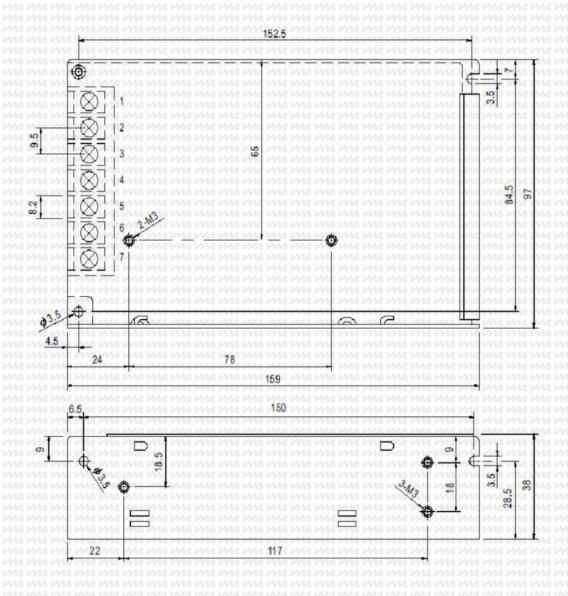
Denominación para pedido: ER60-20/C -V ED-% - Posición montaje - Resorte

Ejemplos:

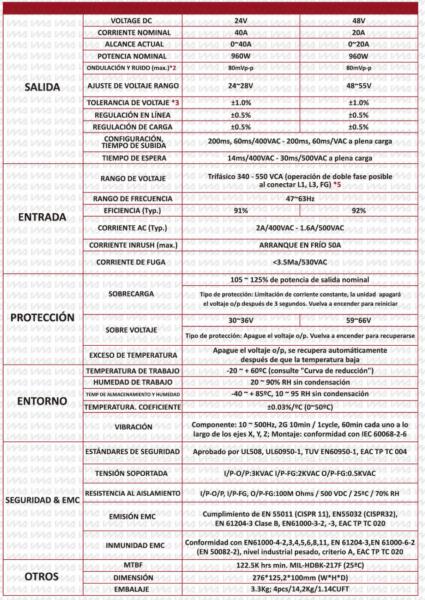
- 1- Tensión nominal: 24 Vdc Factor de marcha: ED100%: Posición montaje A: Con resorte: ER60-20/C 24 Vdc ED100% A RS
- 2- Tensión nominal: 12 Vdc Factor de marcha: ED15%: Posición montaje C: Sin resorte: ER60-20/C 12 Vdc ED15% C RN

IMA-100 / ELEF01633

Grado de protección: IP00 Clase térmica: B (130ºC)


Duración ciclo referencia: 60 minutos

Estas fuentes de alimentación proporcionan un alto grado de seguridad ya que admite tensiones de entrada entre 85v hasta 264v, la tensión de continua la podemos ajustar ±10%.


	MODELO	RS-100-3.3	RS-100-5	RS-100-12	RS-100-15	RS-100-24	RS-100-48			
ma ma ma i	VOLTAGE DC	3.3V	5V	12V	15V	24V	48V			
	RANGO DE VOLTAJE	20A	16A	8.5A	7A	4.5A	2.3A			
	CORRIENTE NOMINAL	0~20A	0~16A	0~8.5A	0~7A	0~4.5A	0~2.3A			
	POTENCIA NOMINAL	66W	80W	102W	105W	108W	110.4W			
	ONDULACIÓN Y RUIDO	80mVp-p	80mVp-p	120mVp-p	120mVp-p	120mVp-p	200mVp-p			
SALIDA	AJUSTE DE VOLTAJE RANGO	3.2V~3.5V	4.75V~5.5V	11.4V~13.2V	14.25V~16.5V	22.8V~26.4V	45.6V~52.8			
	TOLERANCIA DE VOLTAJE	±3.0%	±2.0%	±1.0%	±1.0%	±1.0%	±1.0%			
	REGULACIÓN EN LÍNEA	±0.5%	±0.5%	±0.5%	±0.5%	±0.5%	±0.5%			
	REGULACIÓN DE CARGA	±2.0%	±1.0%	±0.5%	±0.5%	±0.5%	±0.5%			
	CONFIGURACIÓN, TIEMPO DE SUBIDA	500ms, 20ms/230VAC - 1200ms, 30ms/115VAC a plena carga								
944 1944 1944 1	TIEMPO DE ESPERA	ча има има	100	ms/230VAC - 18m	s/115VAC a plena o	arga ///	и ина и			
	RANGO DE VOLTAJE	88≈264\	/AC / 125≈373VD	C (Resistencia 300	VAC Oleadas de 5 s	segundos. sin sufr	ir daños)			
	RANGO DE FRECUENCIA	47~63Hz								
FAITDADA	EFICIENCIA (Typ.)	AA LAAA LAAA LAAA LAAA LAAA LAAA LAAA								
ENTRADA	CORRIENTE AC (Typ.)	2,5A/115VAC - 1,5A/230VAC								
	CORRIENTE INRUSH (max.)	Arranque en frío 40A/230VAC								
	NTRADA EFICIENCIA (Typ.) CORRIENTE AC (Typ.) CORRIENTE INRUSH (max.) CORRIENTE DE FUGA CORRIENTE DE FUGA SOBRECARGA Tipo de protección: modo Hipo, se recupera automá 27,6V=32,41						ia inna in ia inna in			
vina ivina ivina i	ма има има има и	Ad IAAd IAAd IAAd IAAd IAAd IAAd IAAd I								
	SOBRECARGA	Tipo de protección: modo Hipo, se recupera automáticamente después de eliminar el fallo.								
PROTECCIÓN	NA MARI MARI MARI M	27,6V=32,4V								
	SOBRE VOLTAJE	Tipo de protección: modo Hipo, se recupera automáticamente después de eliminar el fallo.								
ANA DANA DANA I	TEMPERATURA DE TRABAJO	na lana lana	-25≈+70°C (Consulte la curva d	le reducción de car	rga de salida)	M DAMA DA			
	HUMEDAD DE TRABAJO	20≈90% RH (sin condensación)								
FUTORNIO	TEMP DE ALMACENAMIENTO Y HUMEDAD		-40≈+85,10≈95% RH							
ENTORNO	TEMPERATURA. COEFICIENTE	±0.03%/°C (0≈50°C)								
	VIBRACIÓN	10≈500⊩	łz, 5G 10 min. / 1	ciclo, período de l	50 min. cada uno a	lo largo de los eje	es X, Y, Z.			
494 1494 1494 494 1494 1494 494 1494 1494	ESTÁNDARES DE SEGURIDAD	UL60950-1, TUV EN60950-1 aprobado								
	TENSIÓN SOPORTADA	I/P-O/P:3KVAC I/P-FG:1.5KVAC O/P-FG:0.5KVAC								
ECHDIDAD & FAAC	RESISTENCIA AL AISLAMIENTO	I/P-O/P, I/P-FG, O/P-FG:100M Ohms/500VDC								
SEGURIDAD & EMC	EMI CONDUCCIÓN Y RADIACIÓN	Conformidad con EN55022 (CISPR22) Clase B								
	EMS INMUNIDAD	Cumplimiento de EN61000-4-2,3,4,5,6,8,11; ENV50204, EN61000-6-2(EN50082-2) nivel de industria pesada, criterio A								
	CORRIENTE ARMÓNICA	Cumplimiento de EN61000-3-2, -3								

IMA-100 Especificaciones mecánicas:

DRT 960W

- Entrada trifásica AC 340 ~ 550V de amplio rango
- Alta eficiencia 91% y baja disipación
- Protecciones: Cortocircuito / Sobrecarga / Sobretensión / Sobretemperatura
- Función paralela opcional (1 + 1)
- Refrigeración por convección de aire libre
- Se puede instalar en carril DIN TS-35 / 7.5 o 15
- UL 508 (equipo de control industrial) aprobado EN61000-6-2 (EN50082-2) nivel
- de inmunidad industrial 100% prueba de quemado a plena carga
- 3 años de garantía

- *1 Todos los parámetros NO mencionados especialmente se miden a una entrada de 400 VCA, carga nominal y 25ºC de temperatura ambiente.
- *2 La ondulación y el ruido se miden a 20 MHz de ancho de banda utilizando un par trenzado de 12 «terminado con un condensador paralelo de 0,1 uf y 47 uf.
- *3 Tolerancia: incluye tolerancia de configuración, regulación de línea y regulación de carga.
- *4 La fuente de alimentación se considera un componente que se instalará en un equipo final. Se debe volver a confirmar que aún cumple con las directivas EMC.
- *5 Funcionamiento bifásico (conectando L1, L3, FG) está permitido bajo una reducción certificada de la carga de salida. Consulte las curvas de reducción para obtener más detalles.
- *6 La reducción de la temperatura ambiente de 3,5°C / 1000 m con modelos sin ventilador y de 5°C / 1000 m con modelos de ventilador para altitud de funcionamiento más alto que 2000m

IMA-230 / ELEF01634

Estas fuentes de alimentación están especialmente indicadas para la alimentación y la regulación de los electroimanes DC de los modelos IMAVEM e IMAREC.

MODELO	IMA-230		
ALIMENTACIÓN	230V		
UTILIZACIÓN	// 0-30V // 4		
Ma Mac Ma Mai M	Regulable		
INTENSIDAD AJUSTABLE	max 5A		

Los imanes permanentes son utilizados en casi todos los sectores industriales. Algunos de nuestros clientes, por ejemplo, de la industria robótica, farmacéutica, automovilística o aeroespacial, tienen estrictos requerimientos que solo pueden ser satisfechos con un control de calidad de alto nivel.

Nuestra empresa suministra piezas de seguridad que exigen el cumplimiento de serios criterios y disposiciones. Una buena calidad de los productos es el resultado de una planificación detallada y de su realización exacta. Para satisfacer las necesidades y expectativas de nuestros clientes, tenemos implantado un sistema de calidad según las directrices de la normativa internacional en ISO 9001:2015.

Una adquisición de materias primas estrictamente controlada y proveedores cuidadosamente seleccionados, por su calidad y amplios controles químicos, físicos y técnicos de la materia, garantizan la utilización de materiales básicos de máxima calidad.

El control estadístico de procesos, así como el control de materiales, se realizan con el apoyo del software más moderno. Con ello, garantizamos una fabricación efectiva y segura de nuestros productos. Las inspecciones de salida de nuestros productos se realizan de acuerdo con la normativa DIN 40080.

Nuestro asesoramiento técnico cualificado y productos de alta calidad nos garantizan que podemos cumplir sus necesidades con entera satisfacción.

Disponemos de un personal altamente cualificado, así como un departamento especial de I+D, que gracias a unos equipos de control y ensayos puede obtener una amplia información, características, curvas y valores magnéticos de nuestros productos.

Con el fin de ayudarle a comprender un poco mejor la terminología, calidades, etc. En este apartado le hacemos llegar una amplia información correspondiente a los diferentes materiales magnéticos, variaciones de geometrías, tolerancias, fuerza de adherencia, dirección de orientación e imantación, formas de los imanes y un amplio diccionario técnico de terminología y definiciones.

IMA trabaja diariamente con el compromiso y la responsabilidad de asegurar un producto con alto nivel de calidad.

VARIACIONES DE GEOMETRÍAS Y CENTRAJES, TOLERANCIAS

Control de calidad

Además de las tolerancias en la longitud, anchura y grosor, los imanes también pueden variar en su geometría final o en su centraje.

Las desviaciones en los imanes rectangulares son, principalmente, la curvatura y el paralelismo. En los discos y aros, son la conicidad y la concentricidad.

Medida nominal		Imanes I	sótropos	Imanes Anisótropos		
Por encima	Hasta	Perpend. a la dir. de prensado ±	Paralelo a la dir. de prensado (grosor) ±	Perpend. a la dir. de prensado ±	Paralelo a la dir. de prensado (grosor)	
ENNE INNE	ma 414 h	0,25	0,30	0,25	0,30	
14 ma	ma 61a in	0,25	0,30	0,25	0,30	
6	8	0,25	0,30	0,25	0,30	
1 M 8 M A	Ma 10 a M	0,30	0,40	0,30	0,40	
10	13	0,30	0,40	0,30	0,40	
13	16	0,30	0,40	0,35	0,45	
16	20	0,30	0,40	0,45	0,55	
20	25	0,30	0,40	0,55	0,70	
1/25 ///4	Ma 30 a M	0,35	a 1/10,45 a 1/1	0,70	0,90	
30	35	0,40	0,50	0,80	1,00	
35	40	0,45	0,55	0,95	1,20	
40	54	0,50	0,60	1,10	1,35	
45	50	0,60	0,80	1,20	NI BRNI BRNI B	
50	M4 5514 M	0,70	0,90	1,30	i ma ma n	
55	60	0,75	1,00	1,45	i waa waa w	
60	70 n	0,90	1,10	1,65	I MA IMA M	
70	80	1,10	1,35	1,90	I MAD MAD IN	
80	90	1,25	1,55	2,15	N BING DAN	
90	100	1,40	1,70	2,40	I MAD PART IN	

MATERIALES MAGNÉTICOS

Imanes de Ferrita

Se obtienen sobre todo por sinterización. Son los más utilizados por su relación calidad/precio. Existen muchas calidades diferentes. Seleccionaremos la calidad según la aplicación. Presentan una buena resistencia a la desimantación.

Imanes de Neodimio

Es el imán con las mejores características magnéticas existentes actualmente. comportamiento en función de la temperatura supera a los anteriores. Podemos utilizarlo para aplicaciones de hasta 150º C. En algunas aplicaciones es necesario protegerlos contra la oxidación.

Imanes de Samario-Cobalto

Están fabricados a partir de elementos de la familia de las tierras raras. Sus características magnéticas permiten reducir sus medidas. Su producto de energía es considerablemente elevado. Tienen un comportamiento muy bueno a temperaturas elevadas.

Imanes de Álnico

Están fabricados por fundición o sinterización. Poseen el mejor comporta- miento a temperaturas elevadas. Tienen una elevada remanencia, pero su coercitividad es bastante baja. Su diseño está condicionado por su baja coercitividad.

Cinta Magnética

Están formados por una mezcla de polvo de ferrita y caucho. Pueden ser suministrados en bruto, con cinta adhesiva o con PVC. Pueden estar imantados de diversas maneras según las

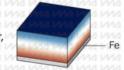
Calidad Tipo	-	Remanencia	Coercit	ividad	Pr. Energía BH	Densidad	Temp.	Temp. Max.
	Br (T)	HcB(KA/m)	HcJ(KA/m)	max. (kj/m³)	g/cm³	Curie (°C)	Tjo. (°C)	
ma ima ima	Y10T	0,2	128 - 160	210 - 280	6,4 - 9,6	4,8	450	250
Ferrita	Y30	0,38 - 0,40	167 - 215	a una una una	26,3 - 29,5	4,5 - 4,9	450	250
Ma IMa IMa	Y30BH	0,38 - 0,40	223 - 239	a inna inna inna a inna inna inn	27,1 - 30,3	4,5 - 4,9	450	250
иа ина ина	Nd35	1,17 - 1,21	860 - 899	a M>955a Ma	263 - 279	7,4 - 7,6	310	a 1440 801a 14
Neodimio	Nd38	1,22 - 1,26	876 - 923	>955	287 - 302	7,4 - 7,6	310	80
na ma ma	Nd35UH	1,17 - 1,21	860 - 907	>1990	263 - 279	7,4 - 7,6	350	180
na ma ma	Sm1Co5	0,85 - 0,90	620 - 648	>1194	127 - 143	8,0 - 8,2	720	250
Samario	Sm2Co17	1,00 - 1,10	653 - 717	>1194	183 - 223	8,2 - 8,4	825	350
ma pina pina	LNG-40	1,10 - 1,22	46 - 48	a vna ma vna	ma 37 - 40 a m	1 ma7,3 a m	890	425
Álnico	LNG-44	1,20 - 1,24	48 - 52	>48	40 - 44	7,2 - 7,3	890	425
ma uma uma	CM1	0,16	a 1/1/95/10 1/1	a una 991a una	ma 147,5 ma m	3.6-3.8	450	4 M4 80 4 M
inta Magnética	CM2	0,24	150	200		3.6-3.8	450	80

1 Tesla = 1 Vs/m2 ó 10.000 Gauss

FUERZA DE ADHERENCIA

Determinación de la fuerza de adherencia.

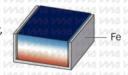
Con el mismo material y el mismo volumen de un imán, se pueden obtener fuerzas de adherencias diferentes. Esto es posible por medio de diferentes tipos de imantación y por la colocación de expansiones polares.

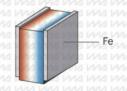

Además de los ejemplos siguientes, que son únicamente para aplicaciones determinadas, hay muchas otras variantes. Los valores indicados son aproximados y dependen del espesor del hierro, del volumen del imán y de la configuración del sistema.

Nosotros le ayudaremos a encontrar el sistema adecuado o la imantación correcta para cada una de sus necesidades. Los valores indicados fueron averiguados con ferritas anisótropas.

Factor de Adherencia 1 Imantado a través de espesor

Factor de Adherencia 1,3 Imantado a través del espesor, con una plaquita de hierro


Factor de Adherencia 3 Polos alternativos en una cara


Factor de Adherencia 3,5 Polos alternativos en una cara, con plaquita de hierro

Factor de Adherencia 5,8 Imantado a través del espesor, con plaquita de hierro en forma de U

Factor de Adherencia 18 Imantado a través del espesor, con 2 plaquitas de hierro

DIRECCIÓN DE LA ORIENTACIÓN

Por dirección de orientación se entiende la posición de los cristales magnéticos en una dirección determinada. En la dirección correcta, el imán alcanza sus valores magnéticos y, por tanto, debe ser magnetizado en esa dirección

La dirección de orientación se logra exponiendo el polvo magnético a un fuerte campo magnético externo durante el prensado. En caso de imanes anulares o redondos, la dirección de orientación generalmente es axial. En caso de imanes cuadrados, según el espesor (h) y en caso de imanes en forma de teja, diametral o radial.

- Imanes Isótropos

Los imanes isótropos no tienen dirección de orientación. Por eso se puede elegir la dirección de magnetización que se desee.

- Imanes Anisótropos

Los imanes anisótropos, son prensados en un campo magnético, condicionando así su dirección de orientación. Solo tienen buenas propiedades magnéticas en esa dirección y sólo pueden ser magnetizados en esa dirección. Con un volumen magnético superior al de los imanes isótropos, la remanencia es aproximadamente el doble.

- Imanes de Orientación Axial

Los imanes anulares y redondos, están orientados axialmente. Los imanes cuadrados se orientan a través del espesor.

- Imanes de Orientación Diametral

Para aplicaciones especiales (motores, bombas, ...), se aplica la dirección diametralmente (transversalmente a la dirección del eje).

- Imanes de Orientación Polar

En imanes de orientación polar, se aplica la orientación como se hará posteriormente la magnetización multipolar. Estos imanes se utilizan primordialmente en combinación con sensores, en motores o en generadores. La remanencia es un 150·200 % mayor que en los mismos materiales de tipo isótropo.

DIRECCIÓN DE LA IMANTACIÓN

Imantación	Pater black black black plate. Pater black	Ejemplo	Orientación	
	Magnetizado a través del espesor	Motores, acoplamientos, sistemas de antibloqueo y de sujeción, separadores, cilindros prensadores	Isótropo Anisótropo	
-s = N	Orientación axial	Altavoces, sistemas de electroimanes blindados, sistemas de sujeción, interruptores electromagnéticos, bujías filtrantes, contactos de gas inerte	lsótropo Anisótropo	
S N N S S	lmantación axial en segmentos: (por ej. de 6 polos)	Motores síncronos Acoplamientos circulares Sensores de hall Frenos	lsótropo Anisótropo	
S - S S	Diametral	Motores síncronos, bombas	lsótropo Anisótropo (1)	
	lmantación axial en segmentos: (por ej. de 6 polos)	Acoplamientos circulares Sensores de hall Frenos Otros rotativos de disco	Isótropo Anisótropo de orientación polar	
-s z	Multipolar en la superficie exterior (por ej. de 4 polos)	Dinamos, motores, acoplamientos, fr sensores de Hi tacogeneradores	Isótropo De orientación polar	
N S-i-s N	Bi o multipolar en la cara interior	Motores, acoplamientos, frenos, sensores de Hall tacogeneradores.	Isótropo De orientación polar	
S S S S	Radial	Motores, acoplamientos	lsótropo Anisótropo	
S S S S N N	Diametral	Motores, acoplamientos	Isótropo Anisótropo	

FORMAS DE IMANES PERMANENTES

Descripción y características

Imanes cuadrados, anulares, redondos y segmentos, son los más usados entre los imanes prensados.

Estos pueden fabricarse a un coste razonable.

Además de las formas mencionadas, los imanes permanentes, se pueden fabricar en otras diferentes. Asimismo, su forma debe determinarse antes del prensado, ya que un cambio posterior de la misma, solo es posible por medio de complicados procesos con útiles de diamante. Lo mismo, es válido para agujeros, muestras, biseles, avellanados, además de todas las operaciones de calado, perforados, etc., solo pueden realizarse en la dirección del prensado. En los imanes anisótropos, se pueden hacer pequeños agujeros, muescas, etc. y transversalmente a la dirección de orientación.

Proceso de tratamiento de los imanes permanentes

Usualmente, se prensan los imanes cuadrados en una matriz, después se sinterizan (tratamiento térmico), y en caso necesario, se rectifican a mejores tolerancias. En algunos casos, es necesario rectificar los imanes por todos los lados, para cumplir con las tolerancias de peso y de dimensiones. Estos pasos de tratamiento, deben ser efectuados cuidadosamente, debido a los altos grados de dureza y fragilidad de los materiales. Si fuese necesario rectificar todos los lados de un imán, se recurre habitualmente al corte, eso sí, dependiendo de las cantidades y las dimensiones. Los imanes de corte no necesitan un posterior rectificado. Imanes de estrechas tolerancias solo pueden ser elaborados con este proceso.

TERMINOLOGÍA Y DEFINICIONES

Antes se creía que el magnetismo era un fenómeno independiente. Pero es un hecho, que los procesos magnéticos están en relación con los procesos eléctricos, que cada proceso magnético es al tiempo eléctrico y viceversa. Para un mejor entendimiento de la física de los imanes, se presentan aquí algunos términos técnicos expresados con frases sencillas.

Anisotropía

Propiedad de algunas magnitudes físicas específicas que tienen valores distintos según ciertas direcciones. Los imanes fabricados anisotrópicamente son expuestos a un elevado campo magnético, en una dirección concreta, durante el proceso de sinterización. En la dirección de este campo magnético se consiguen valores magnéticos superiores a una dirección transversal.

Anisótropo

Significa que las propiedades físicas específicas tienen valores diferentes en las distintas direcciones del material.

Calibración

(de un imán permanente): En general, la tolerancia del flujo magnético suele ser de ±10%. Sin embargo, en algunas aplicaciones, es necesario conseguir una tolerancia más pequeña.

Coeficiente de Temperatura

Describe el cambio en las propiedades magnéticas con el cambio de temperatura. Normalmente, se expresa en % de variación del campo por grado de temperatura.

Coercitividad Intrínseca

Valor del campo, medido en Oersted o A/m, que indica la resistencia de un material a la desimanación. El valor máximo se obtiene tras haber llevado el imán a saturación.

Coercitividad, Hci ó IHc

Es la resistencia de un material magnético a la desimantación. Es el valor de H que anula la inducción magnética o la emanación y se mide en Oersted o en Amperios por metro (A/m).

Curva de Desimantación

Es el tramo de curva del ciclo de histéresis en el segundo cuadrante que define las principales propiedades magnéticas de un imán. Describe el cambio de la inducción magnética o de la emanación desde el valor de remanencia hasta cero al aplicar un campo en sentido negativo.

TERMINOLOGÍA Y DEFINICIONES

Curva de Histéresis

Es la curva cerrada obtenida al medir la inducción B o la imantación M cuando se somete a un campo magnético H describiendo un ciclo completo entre los límites definidos por la inducción o la imantación de saturación del primer cuadrante al tercer cuadrante.

Densidad

Peso específico del material (gr/cm3)

Densidad de Flujo

Es un modo de definir el campo de inducción como el número de líneas de fuerza por unidad de área B= CI) A

Entre hierro

Es el espacio magnético entre los polos de un imán, que puede ser rellenada con cualquier material no magnético, como latón, madera, o plástico.

Fluid

Es el número de "líneas magnéticas de fuerza", medido en Gauss o Tesla. Dichas líneas se pueden visualizar utilizando polvo de hierro. Cuando la inducción magnética es normal a la superficie, el flujo es entonces CI) = B.A.

Fluxómetro

Aparato medidor de flujo magnético, que funciona como amplificador operacional.

Fuerza coercitiva, He

También coercitividad. Es el campo magnético He necesario para reducir la inducción Bola imanación Ma cero. Se mide en Oersted o Amperio/metro y sirve para medir la resistencia de un material magnético a su desimanación.

Fuerza de campo magnético

Es la fuerza de imanación o desimanación, medido en Oersted, y determina la habilidad de una corriente eléctrica, o un material magnético para producir un campo magnético en un punto determinado.

Gaussímetro

Aparato utilizado para medir el valor instantáneo de la inducción magnética B.

Gauss

Unidad de medida de la inducción, B, en el sistema gausiano. 1 G = 10^{-4} T 1 mT = 10 G

TERMINOLOGÍA Y DEFINICIONES

Histéresis

Es la capacidad de un material magnético de conservar la fuerza magnética al ser sometida a una fuerza de desimanación. El área de la curva representa la diferencia, pérdida de histéresis, medido a frecuencia baja, entre energía almacenada y energía liberada por unidad de volumen de material y por ciclo.

Inducción Magnética

Es la fuerza de imanación o desimanación, medida en Oersted, que determina la capacidad de una corriente eléctrica, o un material magnético, de inducir un campo magnético en un punto determinado.

Isotrópico

Se considera que un imán es isotrópico cuando sus propiedades son independientes de su orientación. Las partículas no están orientadas aleatoriamente. No tiene dirección de orientación magnética preferida, lo que permite imantar en cualquier dirección.

Maxwel

Unidad para el flujo magnético en el sistema de medición de Gauss. Un Maxwell equivalente a una línea de flujo magnético.

Oersted

La unidad de fuerza de campo magnético, H, en el sistema electromagnético GSM. 1 Oersted (Oe) = 0,8 A/cm.

Pérdida Irreversible

Cambios irreversibles que ocurren cuando el imán se desimanta parcial o completamente a causa de la exposición a temperaturas elevadas o bajas, o a causa de otros factores como campos externos de desimantación. Al reimantar los imanes, estas pérdidas se recuperan.

Permeabilidad Inicial

Es la relación entre el campo By el H, medida cuando el campo H tiende a cero. Más útil es la permeabilidad relativa o cociente entra la permeabilidad del material y la del aire. Se suele utilizar para caracterizar los ferromagnéticos blandos de los núcleos de los transformadores.

Permeámetro

Aparato utilizado para calcular la permeabilidad de núcleos de baja permeabilidad, que mide las características de un material.

Polo Norte

Polo magnético que es atraído por el Polo Norte geográfico de la tierra.

Polo Sur

Polo magnético que es atraído por el Polo sur geográfico de la tierra.

TERMINOLOGÍA Y DEFINICIONES

Producto de Energía (BH) Máx.

Es la energía que un material magnético puede proporcionar a un circuito magnético externo al operar en un punto de su curva de desimanación. Medido en megaGauss-0ersteds, MG0e, o en kJ/m³

Remanencia (Br)

Es la imantación residual del imán que ha sido imantado hasta la saturación en un circuito cerrado. Br se calcula en Tesla (T), militeslas (mT) o en Gauss (G), y corresponde a la inducción magnética que queda en el material magnético después de ser imantado a saturación y preparado para su uso final.

Resistividad Eléctrica

Es la resistencia eléctrica al flujo de la corriente por unidad de longitud del material p [ohm.cm]

Saturación

Es el valor máximo de la imanación, referido al descenso de la permeabilidad con fuerza de imantación creciente. Es el flujo de densidad de un valor máximo de imantación, la polarización magnética más elevada que se puede obtener de un imán. En un inductor, corresponde al descenso de la inductancia con corriente.

Sinterización

Es el tratamiento térmico a temperaturas elevadas, por el que las piezas prensadas disminuyen su volumen y se homogeneizan. En las ferritas, aprox. 1200 Ca 1250 C y en las tierras raras, aprox. 1050 Ca 1200 C.

Temperatura de CURIE, To

Es la temperatura por encima de la cual los materiales ferromagnéticos se vuelven paramagnéticos, perdiendo sustancialmente todas sus propiedades magnéticas permanentes. Depende normalmente de la composición química del material magnético.

Temperatura Máxima de Trabajo

Es la temperatura máxima de exposición que un imán puede resistir sin que se produzcan cambios estructurales o inestabilidades en sus propiedades.

Tesla

MKSA (SI) unidad para la densidad de flujo magnético, 1 Tesla = 1 Vs/m² ó 10.000 Gauss.

Weber

Unidad para el flujo magnético, 1 Weber = 10⁻⁸ Maxwell = 1 Vs.

NORMATIVAS DE SUMINISTRO

Daños Mecánicos

Los imanes sinterizados son muy quebradizos. Esto quiere decir, que pueden tener pequeñas roturas (descantillados) que no pueden impedirse. Ahora bien, esto no perjudica a las propiedades magnéticas. Nuestros productos están sometidos a una inspección óptica del acabado de las piezas. Toda rotura inferior a un 2%, no es tenida en cuenta. Si el cliente lo desea, el control puede ser inferior al 2%.

Partículas Adheridas

Debido al sistema de producción, pueden encontrarse, en ocasiones, partículas de polvos superficiales adheridas al imán.

Tolerancias de Geometría y Centraje

Si no se concretan las tolerancias, estas siempre estarán acorde con la normativa DIN 7168

Tolerancias Dimensionales

Para imanes no rectificados se aplica la tolerancia DIN 7140.

Características Magnéticas

Los valores indicados en nuestro catálogo, serán los que posean nuestras piezas si antes no se ha acordado una variación. Los parámetros magnéticos están acorde a la norma DIN 17410, medidas en una pieza patrón según norma DIN 50470. Dependiendo de la geometría y dimensiones, variaciones de nuestras especificaciones son posibles. Si desean un control del 100%, deben indicárnoslo.

Embalaje

Intentamos que el embalaje sea lo más limpio posible y de materiales reciclables. Por consiguiente, utilizamos cartones separadores. Si necesita hacerlos en tubos de plástico o protegidos con planchas metálicas, lo podemos hacer sin ningún problema, previa indicación del cliente. Estamos dispuestos a realizar cualquier tipo de embalaje que nos soliciten. Un embalaje que resulte económico, ecológico y apropiado, tecnológicamente para el mejor producto y servicio.

PROVEEDOR GLOBAL EN FABRICACIÓN DE IMANES Y SOLUCIONES MAGNÉTICAS.

FÁBRICA Y OFICINAS CENTRALES

Avda. Catalunya, 5 08291 - Ripollet Tel.: (+34) 93 57 95 415 Fax : (+34) 93 54 45 320 Email : contacto@imamagnets.com

IMA Italia Tel.: (+34) 93 57 95 415 Email : italia@imamagnets.com

IMA Francia Tel.: (+33) 182 882 160 Email : commercial@imamagnets.com

IMA Reino Unido Tel.: (+44) 203 318 75 73 Email : contact@imamagnets.com

IMA Alemania Tel.: (+49) 303 080 90 74 Email : kontakt@imamagnets.com

IMA Portugal Tel.: (+351) 30 880 0711 Email : contato@imamagnets.com

